Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Med ; 29(6): 1349-1357, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37322121

ABSTRACT

The NCI-MATCH (Molecular Analysis for Therapy Choice) trial ( NCT02465060 ) was launched in 2015 as a genomically driven, signal-seeking precision medicine platform trial-largely for patients with treatment-refractory, malignant solid tumors. Having completed in 2023, it remains one of the largest tumor-agnostic, precision oncology trials undertaken to date. Nearly 6,000 patients underwent screening and molecular testing, with a total of 1,593 patients (inclusive of continued accrual from standard next-generation sequencing) being assigned to one of 38 substudies. Each substudy was a phase 2 trial of a therapy matched to a genomic alteration, with a primary endpoint of objective tumor response by RECIST criteria. In this Perspective, we summarize the outcomes of the initial 27 substudies in NCI-MATCH, which met its signal-seeking objective with 7/27 positive substudies (25.9%). We discuss key aspects of the design and operational conduct of the trial, highlighting important lessons for future precision medicine studies.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Neoplasms/therapy , Precision Medicine , Medical Oncology , Genomics , High-Throughput Nucleotide Sequencing
2.
J Clin Oncol ; 38(33): 3883-3894, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33048619

ABSTRACT

PURPOSE: Therapeutically actionable molecular alterations are widely distributed across cancer types. The National Cancer Institute Molecular Analysis for Therapy Choice (NCI-MATCH) trial was designed to evaluate targeted therapy antitumor activity in underexplored cancer types. Tumor biopsy specimens were analyzed centrally with next-generation sequencing (NGS) in a master screening protocol. Patients with a tumor molecular alteration addressed by a targeted treatment lacking established efficacy in that tumor type were assigned to 1 of 30 treatments in parallel, single-arm, phase II subprotocols. PATIENTS AND METHODS: Tumor biopsy specimens from 5,954 patients with refractory malignancies at 1,117 accrual sites were analyzed centrally with NGS and selected immunohistochemistry in a master screening protocol. The treatment-assignment rate to treatment arms was assessed. Molecular alterations in seven tumors profiled in both NCI-MATCH trial and The Cancer Genome Atlas (TCGA) of primary tumors were compared. RESULTS: Molecular profiling was successful in 93.0% of specimens. An actionable alteration was found in 37.6%. After applying clinical and molecular exclusion criteria, 17.8% were assigned (26.4% could have been assigned if all subprotocols were available simultaneously). Eleven subprotocols reached their accrual goal as of this report. Actionability rates differed among histologies (eg, > 35% for urothelial cancers and < 6% for pancreatic and small-cell lung cancer). Multiple actionable or resistance-conferring tumor mutations were seen in 11.9% and 71.3% of specimens, respectively. Known resistance mutations to targeted therapies were numerically more frequent in NCI-MATCH than TCGA tumors, but not markedly so. CONCLUSION: We demonstrated feasibility of screening large numbers of patients at numerous accruing sites in a complex trial to test investigational therapies for moderately frequent molecular targets. Co-occurring resistance mutations were common and endorse investigation of combination targeted-therapy regimens.


Subject(s)
Neoplasms/drug therapy , Neoplasms/genetics , Adolescent , Adult , Aged , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biopsy , Disease Progression , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Neoplasms/pathology , Young Adult
3.
J Natl Cancer Inst ; 112(10): 1021-1029, 2020 10 01.
Article in English | MEDLINE | ID: mdl-31922567

ABSTRACT

BACKGROUND: The proportion of tumors of various histologies that may respond to drugs targeted to molecular alterations is unknown. NCI-MATCH, a collaboration between ECOG-ACRIN Cancer Research Group and the National Cancer Institute, was initiated to find efficacy signals by matching patients with refractory malignancies to treatment targeted to potential tumor molecular drivers regardless of cancer histology. METHODS: Trial development required assumptions about molecular target prevalence, accrual rates, treatment eligibility, and enrollment rates as well as consideration of logistical requirements. Central tumor profiling was performed with an investigational next-generation DNA-targeted sequencing assay of alterations in 143 genes, and protein expression of protein expression of phosphatase and tensin homolog, mutL homolog 1, mutS homolog 2, and RB transcriptional corepressor 1. Treatments were allocated with a validated computational platform (MATCHBOX). A preplanned interim analysis evaluated assumptions and feasibility in this novel trial. RESULTS: At interim analysis, accrual was robust, tumor biopsies were safe (<1% severe events), and profiling success was 87.3%. Actionable molecular alteration frequency met expectations, but assignment and enrollment lagged due to histology exclusions and mismatch of resources to demand. To address this lag, we revised estimates of mutation frequencies, increased screening sample size, added treatments, and improved assay throughput and efficiency (93.9% completion and 14-day turnaround). CONCLUSIONS: The experiences in the design and implementation of the NCI-MATCH trial suggest that profiling from fresh tumor biopsies and assigning treatment can be performed efficiently in a large national network trial. The success of such trials necessitates a broad screening approach and many treatment options easily accessible to patients.


Subject(s)
Antineoplastic Agents/administration & dosage , Neoplasms/drug therapy , Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Biopsy , Clinical Trial Protocols as Topic , Clinical Trials, Phase II as Topic , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Molecular Targeted Therapy , Neoplasms/pathology , Precision Medicine , Young Adult
5.
Genome Res ; 14(5): 956-62, 2004 May.
Article in English | MEDLINE | ID: mdl-15123592

ABSTRACT

Comparative genomics techniques are used in bioinformatics analyses to identify the structural and functional properties of DNA sequences. As the amount of available sequence data steadily increases, the ability to perform large-scale comparative analyses has become increasingly relevant. In addition, the growing complexity of genomic feature annotation means that new approaches to genomic visualization need to be explored. We have developed a Java-based application called Sockeye that uses three-dimensional (3D) graphics technology to facilitate the visualization of annotation and conservation across multiple sequences. This software uses the Ensembl database project to import sequence and annotation information from several eukaryotic species. A user can additionally import their own custom sequence and annotation data. Individual annotation objects are displayed in Sockeye by using custom 3D models. Ensembl-derived and imported sequences can be analyzed by using a suite of multiple and pair-wise alignment algorithms. The results of these comparative analyses are also displayed in the 3D environment of Sockeye. By using the Java3D API to visualize genomic data in a 3D environment, we are able to compactly display cross-sequence comparisons. This provides the user with a novel platform for visualizing and comparing genomic feature organization.


Subject(s)
Genomics/methods , Imaging, Three-Dimensional/trends , Software/trends , Animals , Computational Biology/methods , Computer Graphics/trends , Database Management Systems/trends , Humans , Mice , Rats , Software Design
SELECTION OF CITATIONS
SEARCH DETAIL
...