Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Front Pharmacol ; 14: 1166923, 2023.
Article in English | MEDLINE | ID: mdl-37214473

ABSTRACT

Introduction: Community-acquired pneumonia (CAP) is lethal in elderly individuals who are more vulnerable to respiratory failure and require more emergency ventilation support than younger individuals. Interleukin-6 (IL-6) plays a crucial role and has predictive value in CAP; high serum IL-6 concentrations in adults are associated with high respiratory failure and mortality rates. Early detection of IL-6 concentrations can facilitate the timely stratification of patients at risk of acute respiratory failure. However, conventional enzyme-linked immunosorbent assay (ELISA) IL-6 measurement is laborious and time-consuming. Methods: The IL-6 rapid diagnostic system combined with a lateral flow immunoassay-based (LFA-based) IL-6 test strip and a spectrum-based optical reader is a novel tool developed for rapid and sequential bedside measurements of serum IL-6 concentrations. Here, we evaluated the correlation between the IL-6 rapid diagnostic system and the ELISA and the efficacy of the system in stratifying high-risk elderly patients with CAP. Thirty-six elderly patients (median age: 86.5 years; range: 65-97 years) with CAP were enrolled. CAP diagnosis was established based on the Infectious Diseases Society of America (IDSA) criteria. The severity of pneumonia was assessed using the CURB-65 score and Pneumonia Severity Index (PSI). IL-6 concentration was measured twice within 24 h of admission. Results: The primary endpoint variable was respiratory failure requiring invasive mechanical or non-invasive ventilation support after admission. IL-6 rapid diagnostic readouts correlated with ELISA results (p < 0.0001) for 30 samples. Patients were predominantly male and bedridden (69.4%). Ten patients (27.7%) experienced respiratory failure during admission, and five (13.9%) died of pneumonia. Respiratory failure was associated with a higher mortality rate (p = 0.015). Decreased serum IL-6 concentration within 24 h after admission indicated a lower risk of developing respiratory failure in the later admission course (Receiver Operating Characteristic [ROC] curve = 0.696). Conclusion: Sequential IL-6 measurements with the IL-6 rapid diagnostic system might be useful in early clinical risk assessment and severity stratification of elderly patients with pneumonia. This system is a potential point-of-care diagnostic device for sequential serum IL-6 measurements that can be applied in variable healthcare systems.

3.
Clin Immunol ; 251: 109342, 2023 06.
Article in English | MEDLINE | ID: mdl-37100338

ABSTRACT

BACKGROUND: Information regarding the heterologous prime-boost COVID vaccination has been fully elucidated. The study aimed to evaluate both humoral, cellular immunity and cross-reactivity against variants after heterologous vaccination. METHODS: We recruited healthcare workers previously primed with Oxford/AstraZeneca ChAdOx1-S vaccines and boosted with Moderna mRNA-1273 vaccine boost to evaluate the immunological response. Assay used: anti-spike RBD antibody, surrogate virus neutralizing antibody and interferon-γ release assay. RESULTS: All participants exhibited higher humoral and cellular immune response after the booster regardless of prior antibody level, but those with higher antibody level demonstrated stronger booster response, especially against omicron BA.1 and BA.2 variants. The pre-booster IFN-γ release by CD4+ T cells correlates with post-booster neutralizing antibody against BA.1 and BA.2 variant after adjustment with age and gender. CONCLUSIONS: A heterologous mRNA boost is highly immunogenic. The pre-existing neutralizing antibody level and CD4+ T cells response correlates with post-booster neutralization reactivity against the Omicron variant.


Subject(s)
COVID-19 , Immunity, Humoral , Humans , T-Lymphocytes , 2019-nCoV Vaccine mRNA-1273 , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , Antibodies, Neutralizing , CD4-Positive T-Lymphocytes , Antibodies, Viral
4.
Micromachines (Basel) ; 13(10)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36296089

ABSTRACT

Cellular chemotaxis has been the subject of a variety of studies due to its relevance in physiological processes, disease pathogenesis, and systems biology, among others. The migration of cells towards a chemical source remains a closely studied topic, with the Boyden chamber being one of the earlier techniques that has successfully studied cell chemotaxis. Despite its success, diffusion chambers such as these presented a number of problems, such as the quantification of many aspects of cell behaviour, the reproducibility of procedures, and measurement accuracy. The advent of microfluidic technology prompted more advanced studies of cell chemotaxis, usually involving the social amoeba Dictyostelium discoideum (D. discoideum) as a model organism because of its tendency to aggregate towards chemotactic agents and its similarities to higher eukaryotes. Microfluidic technology has made it possible for studies to look at chemotactic properties that would have been difficult to observe using classic diffusion chambers. Its flexibility and its ability to generate consistent concentration gradients remain some of its defining aspects, which will surely lead to an even better understanding of cell migratory behaviour and therefore many of its related biological processes. This paper first dives into a brief introduction of D. discoideum as a social organism and classical chemotaxis studies. It then moves to discuss early microfluidic devices, before diving into more recent and advanced microfluidic devices and their use with D. discoideum. The paper then closes with brief opinions about research progress in the field and where it will possibly lead in the future.

5.
Diagnostics (Basel) ; 12(6)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35741211

ABSTRACT

The COVID-19 pandemic has had an enormous impact on individuals, societies, and economies worldwide and has resulted in a significant loss of life worldwide [...].

6.
Vaccines (Basel) ; 10(2)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35214731

ABSTRACT

As of August 2021, there have been over 200 million confirmed case of coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus and more than 4 million COVID-19-related deaths globally. Although real-time polymerase chain reaction is considered to be the primary method of detection for SARS-CoV-2 infection, the use of serological assays for detecting COVID-19 antibodies has been shown to be effective in aiding with diagnosis, particularly in patients who have recovered from the disease and those in later stages of infection. Since it has a high detection rate and few limitations compared to conventional enzyme-linked immunosorbent assay protocols, we used a lateral flow immunoassay as our diagnostic tool of choice. Since lateral flow immunoassay results interpreted by the naked eye may lead to erroneous diagnoses, we developed an innovative, portable device with the capacity to capture a high-resolution reflectance spectrum as a means of promoting diagnostic accuracy. We combined this spectrum-based device with commercial lateral flow immunoassays to detect the neutralizing antibody in serum samples collected from 30 COVID-19-infected patients (26 mild cases and four severe cases). The results of our approach, lateral flow immunoassays coupled with a spectrum-based reader, demonstrated a 0.989 area under the ROC curve, 100% sensitivity, 95.7% positive predictive value, 87.5% specificity, and 100% negative predictive value. As a result, our approach exhibited great value for neutralizing antibody detection. In addition to the above tests, we also tested plasma samples from 16 AstraZeneca-vaccinated (ChAdOx1nCoV-19) patients and compared our approach and enzyme-linked immunosorbent assay results to see whether our approach could be applied to vaccinated patients. The results showed a high correlation between these two approaches, indicating that the lateral flow immunoassay coupled with a spectrum-based reader is a feasible approach for diagnosing the presence of a neutralizing antibody in both COVID-19-infected and vaccinated patients.

7.
Front Immunol ; 13: 807454, 2022.
Article in English | MEDLINE | ID: mdl-35145520

ABSTRACT

Background: Innate immunity, armed with pattern recognition receptors including Toll-like receptors (TLR), is critical for immune cell activation and the connection to anti-microbial adaptive immunity. However, information regarding the impact of age on the innate immunity in response to SARS-CoV2 adenovirus vector vaccines and its association with specific immune responses remains scarce. Methods: Fifteen subjects between 25-35 years (the young group) and five subjects between 60-70 years (the older adult group) were enrolled before ChAdOx1 nCoV-19 (AZD1222) vaccination. We determined activation markers and cytokine production of monocyte, natural killer (NK) cells and B cells ex vivo stimulated with TLR agonist (poly (I:C) for TLR3; LPS for TLR4; imiquimod for TLR7; CpG for TLR9) before vaccination and 3-5 days after each jab with flow cytometry. Anti-SARS-CoV2 neutralization antibody titers (surrogate virus neutralization tests, sVNTs) were measured using serum collected 2 months after the first jab and one month after full vaccination. Results: The older adult vaccinees had weaker vaccine-induced sVNTs than young vaccinees after 1st jab (47.2±19.3% vs. 21.2±22.2%, p value<0.05), but this difference became insignificant after the 2nd jab. Imiquimod, LPS and CpG strongly induced CD86 expression in IgD+CD27- naïve and IgD-CD27+ memory B cells in the young group. In contrast, only the IgD+ CD27- naïve B cells responded to these TLR agonists in the older adult group. Imiquimode strongly induced the CD86 expression in CD14+ monocytes in the young group but not in the older adult group. After vaccination, the young group had significantly higher IFN-γ expression in CD3- CD56dim NK cells after the 1st jab, whilst the older adult group had significantly higher IFN-γ and granzyme B expression in CD56bright NK cells after the 2nd jab (all p value <0.05). The IFN-γ expression in CD56dim and CD56bright NK cells after the first vaccination and CD86 expression in CD14+ monocyte and IgD-CD27-double-negative B cells after LPS and imiquimod stimulation correlated with vaccine-induced antibody responses. Conclusions: The innate immune responses after the first vaccination correlated with the neutralizing antibody production. Older people may have defective innate immune responses by TLR stimulation and weak or delayed innate immune activation profile after vaccination compared with young people.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , B-Lymphocytes/immunology , ChAdOx1 nCoV-19/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , Adult , Aged , COVID-19/prevention & control , Female , Humans , Imiquimod/pharmacology , Immunity, Innate/immunology , Immunosenescence/immunology , Interferon-gamma/blood , Male , Middle Aged , Poly I-C/administration & dosage , Poly I-C/immunology , Toll-Like Receptors/immunology , Vaccination
8.
Vaccines (Basel) ; 10(1)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35062762

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during pregnancy could result in adverse perinatal outcome. Clinical data on the assessment of the immune response in vaccinated pregnant women and subsequent transplacental antibody transfer are quite limited. OBJECTIVE: To assess maternal and neonatal neutralizing antibody levels against both wildtype and Delta (B.1.617.2) variants after maternal mRNA vaccination. STUDY DESIGN: This cohort study was conducted 29 pregnant women who were vaccinated at least one dose of Moderna (mRNA-1273) vaccine. Both neutralizing antibody (wildtype and Delta variant) and S1 receptor binding domain IgG antibody levels were evaluated in maternal and cord blood on the day of delivery. RESULTS: Superiority of antibody level was significant in fully vaccinated women compared with the one-dose group (maternal sera, median, 97.46%; cord sera, median, 97.37% versus maternal sera, median, 4.01%; cord sera, median, 1.44%). No difference in antibody level was noted in relation to interval of second immunization to delivery in the two-dose group (95.99% in 0-2 weeks, 97.45% in 2-4 weeks, 97.48% in 4-8 weeks, 97.72% in 8-10 weeks). The most pronounced reduction was observed for the Delta variant. The wildtype neutralizing antibody level of full-vaccinated women was not influenced by the pertussis vaccination. CONCLUSION: The data underscore the importance of full vaccination in pregnancy and support the recommendation of COVID-19 immunization for pregnant women. The lower level of vaccine-induced neutralizing antibodies for the Delta variant indicates insufficient protection for mother and newborn and highlights the need for development of effective vaccine strategies.

9.
Micromachines (Basel) ; 12(2)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668560

ABSTRACT

Escherichia coli has been known to cause a variety of infectious diseases. The conventional enzyme-linked immunosorbent assay (ELISA) is a well-known method widely used to diagnose a variety of infectious diseases. This method is expensive and requires considerable time and effort to conduct and complete multiple integral steps. We previously proposed the use of paper-based ELISA to rapidly detect the presence of E. coli. This approach has demonstrated utility for point-of-care (POC) urinary tract infection diagnoses. Paper-based ELISA, while advantageous, still requires the execution of several procedural steps. Here, we discuss the design and experimental implementation of a turntable paper-based device to simplify the paper-based ELISA protocols for the detection of E. coli. In this process, antibodies or reagents are preloaded onto zones of a paper-based device and allowed to dry before use. We successfully used this device to detect E. coli with a detection limit of 105 colony-forming units (colony-forming unit [CFU])/mL.

SELECTION OF CITATIONS
SEARCH DETAIL