Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Micromachines (Basel) ; 15(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38542601

ABSTRACT

A quasi-continuous-wave (QCW) laser diode (LD) driver is commonly used to drive diode bars and stacks designed specifically for QCW operations in solid-state lasers. Such drivers are optimized to deliver peak current and voltage pulses to LDs while maintaining low average power levels. As a result, they are widely used in laser processing devices and laser instruments. Traditional high-energy QCW LD drivers primarily use capacitors as energy storage components and pulsed constant-current sources with op-amps and power metal-oxide-semiconductor field-effect transistors (MOSFETs) as their core circuits for generating repeated constant-current pulses. The drawback of this type of driver is that the driver's output voltage needs to be manually adjusted according to the operating voltage of the load before use to maximize driver efficiency while providing a sufficient current. Another drawback is its inability to automatically adjust the output voltage to maintain high efficiency when the load changes during the driver operation. Drastic changes in the load can cause the driver to fail to function properly in extreme cases. Based on the above traditional circuit structure, this study designed a stability compensation circuit and realized a QCW LD driver for driving a GS20 diode stack with a maximum repetition rate of 100 Hz, a constant current of approximately 300 A, a load voltage of approximately 10 V, and a pulse width of approximately 300 µs. In particular, a high-efficiency, load-adaptive driving method was used with the MOSFETs in the critical saturation region (i.e., between the linear and saturated regions), controlling its power loss effectively while achieving maximum output current of the driver. The experiments demonstrated that the driver efficiency could be maintained at more than 80% when the load current varied from 50 to 300 A.

2.
J Environ Sci (China) ; 125: 831-842, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36375965

ABSTRACT

This study represents the first quantitative evaluation of pollution transport budget within the boundary layer of typical cities in the Beijing-Tianjin-Hebei (BTH) region from the perspective of horizontal and vertical exchanges and further discusses the impact of the atmospheric boundary layer (ABL)-free troposphere (FT) exchange on concentration of fine particulate matter (PM2.5) within the ABL during heavy pollution. From the perspective of the transport flux balance relationship, differences in pollution transport characteristics between the two cities is mainly reflected in the ABL-FT exchange effect. The FT mainly flowed into the ABL in BJ, while in SJZ, the outflow from the ABL to the FT was more intense. Combined with an analysis of vertical wind profile distribution, BJ was found to be more susceptible to the influence of northwest cold high prevailing in winter, while sinking of strong cold air allowed the FT flowing into the ABL influence the vertical exchange over BJ. In addition, we selected a typical pollution event for targeted analysis to understand mechanistic details of the influence of ABL-FT exchange on the pollution event. These results showed that ABL-FT interaction played an important role in PM2.5 concentration within the ABL during heavy pollution. Especially in the early stage of heavy pollution, FT transport contributed as much as 82.74% of PM2.5 within the ABL. These findings are significant for improving our understanding of pollution transport characteristics within the boundary layer and the effect of ABL-FT exchange on air quality.


Subject(s)
Air Pollutants , Air Pollution , Cities , Air Pollutants/analysis , Environmental Monitoring/methods , Air Pollution/analysis , Particulate Matter/analysis , China , Seasons , Beijing
3.
Philos Trans A Math Phys Eng Sci ; 380(2234): 20210318, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36031833

ABSTRACT

When a rubber tube with free ends is inflated under volume control, the pressure will first reach a maximum and then decrease monotonically to approach a constant asymptote. The pressure maximum corresponds to the initiation of a localized bulge and is predicted by a bifurcation condition, whereas the asymptote is the Maxwell pressure corresponding to a 'two-phase' propagation state. By contrast, when the tube is first pre-stretched and then has its ends fixed during subsequent inflation, the pressure as a function of the bulge amplitude has both a maximum and a minimum, and the behaviour on the right ascending branch has previously not been fully understood. We show that for all values of the pre-stretch and tube length, the ascending branches all converge to a single curve that is dependent only on the ratio of the tube thickness to the outer radius. This curve represents the Maxwell state to be approached in each case (if Euler buckling or axisymmetric wrinkling does not occur first), but this state is pressure-dependent, in contrast to the free-ends case. We also demonstrate experimentally that localized bulging cannot occur when the pre-stretch is sufficiently large and investigate what strain-energy functions can predict this observed phenomenon. This article is part of the theme issue 'The Ogden model of rubber mechanics: Fifty years of impact on nonlinear elasticity'.

4.
Environ Pollut ; 285: 117686, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34380235

ABSTRACT

Atmospheric aerosols play a crucial role in climate change, especially in the Himalayas and Tibetan Plateau. Here, we present the seasonal and diurnal characteristics of aerosol vertical profiles measured using a Mie lidar, along with surface black carbon (BC) measurements, at Mt. Qomolangma (QOMS), in the central Himalayas, in 2018-2019. Lidar-retrieved profiles of aerosols showed a distinct seasonal pattern of aerosol loading (aerosol extinction coefficient, AEC), with a maximum in the pre-monsoon (19.8 ± 22.7 Mm-1 of AEC) and minimum in the summer monsoon (7.0 ± 11.2 Mm-1 of AEC) seasons. The diurnal variation characteristics of AEC and BC were quite different in the non-monsoon seasons with enriched aerosols being maintained from 00:00 to 10:00 in the pre-monsoon season. The major aerosol types at QOMS were identified as background, pollution, and dust aerosols, especially during the pre-monsoon season. The occurrence of pollution events influenced the vertical distribution, seasonal/diurnal patterns, and types of aerosols. Source contribution of BC based on the weather research and forecasting chemical model showed that approximately 64.2% ± 17.0% of BC at the QOMS originated from India and Nepal in South Asia during the non-monsoon seasons, whereas approximately 47.7% was from local emission sources in monsoon season. In particular, the high abundance of BC at the QOMS in the pre-monsoon season was attributed to biomass burning, whereas anthropogenic emissions were the likely sources during the other seasons. The maximum aerosol concentration appeared in the near-surface layer (approximately 4.3 km ASL), and high concentrations of transported aerosols were mainly found at 4.98, 4.58, 4.74, and 4.88 km ASL in the pre-monsoon, monsoon, post-monsoon, and winter seasons, respectively. The investigation of the vertical profiles of aerosols at the QOMS can help verify the representation of aerosols in the air quality model and satellite products and regulate the anthropogenic disturbance over the Tibetan Plateau.


Subject(s)
Air Pollutants , Aerosols/analysis , Air Pollutants/analysis , Environmental Monitoring , India , Seasons , Soot/analysis
5.
Orthop Surg ; 13(4): 1408-1416, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33942538

ABSTRACT

OBJECTIVE: To investigate the biomechanical effect of different intervertebral reconstructive heights on adjacent segments following C5 /C6 anterior cervical discectomy and fusion (ACDF) through finite element analysis. METHODS: A finite element model of intact C4 -C7 segments was developed and validated for the present study. Five additional C4 -C7 postoperative models were constructed with 100%, 125%, 150%, 175%, and 200% of the benchmark height of C5 /C6 on the basis of the intact model. The changes in intradiscal pressure (IDP) and range of motion (ROM) of adjacent segments before and after reconstruction of C5 /C6 were analyzed. RESULTS: For the upper adjacent segment (C4 /C5 ), the IDPs under the different loading conditions all increased after reconstruction. The maximum IDPs were 0.387, 0.489, 0.491, and 0.472 MPa under flexion, extension, axial rotation, and lateral bending, respectively, observed at the reconstructive height of 200%. The minimum IDPs were observed at 150% reconstructive height under all loading conditions except extension, and were 57, 86 and 81% of the maximum IDPs under flexion, axial rotation, and lateral bending, respectively. The minimum IDP under extension occurred when the reconstructive height is 125% of the benchmark height. For the lower adjacent segment (C6 /C7 ), the IDPs of postoperative models under all loading conditions also increased compared to the preoperative model. The maximum IDPs after reconstruction under flexion, extension, axial rotation, and lateral bending were 0.402, 0.411, 0.461, and 0.497 MPa, respectively, when the height of the reconstruction was 200% of the benchmark. The minimum IDPs were observed after a reconstruction at 150% of the benchmark, and were 59%, 85%, 82%, and 81% of the maximum IDPs under flexion, extension, axial rotation, and lateral bending loading conditions. CONCLUSIONS: The reconstructive height is an important factor affecting the IDP and the ROM of adjacent segments after ACDF. To delay the adjacent segment disease, an intervertebral reconstructive height of 150% is an appropriate height in C5 /C6 ACDF.


Subject(s)
Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/surgery , Diskectomy/methods , Imaging, Three-Dimensional , Spinal Fusion/methods , Adult , Biomechanical Phenomena , Finite Element Analysis , Healthy Volunteers , Humans , Male , Range of Motion, Articular , Tomography, X-Ray Computed
7.
Proc Math Phys Eng Sci ; 476(2237): 20200031, 2020 May.
Article in English | MEDLINE | ID: mdl-32523417

ABSTRACT

Based on previous work for the static problem, in this paper, we first derive one form of dynamic finite-strain shell equations for incompressible hyperelastic materials that involve three shell constitutive relations. In order to single out the bending effect as well as to reduce the number of shell constitutive relations, a further refinement is performed, which leads to a refined dynamic finite-strain shell theory with only two shell constitutive relations (deducible from the given three-dimensional (3D) strain energy function) and some new insights are also deduced. By using the weak formulation of the shell equations and the variation of the 3D Lagrange functional, boundary conditions and the two-dimensional shell virtual work principle are derived. As a benchmark problem, we consider the extension and inflation of an arterial segment. The good agreement between the asymptotic solution based on the shell equations and that from the 3D exact one gives verification of the former. The refined shell theory is also applied to study the plane-strain vibrations of a pressurized artery, and the effects of the axial pre-stretch, pressure and fibre angle on the vibration frequencies are investigated in detail.

8.
Opt Express ; 28(9): 13786-13800, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32403846

ABSTRACT

The differential absorption lidar (DIAL) has been proposed as an effective method for detecting polluted gases in the atmosphere. In this paper, we present a compact and movable ozone differential absorption (O3-DIAL) based on an all-solid-state and tuning-free laser source. For the first time, solid-state stimulated Raman scattering technology is used in the emitting source of the lidar for wavelength conversion. A high repetition frequency Innoslab laser is used for pumping SrWO4 crystals to get yellow lasers which can achieve up to 70% light-to-light conversion efficiency. Our results demonstrate that using the SrWO4 crystal as the Raman frequency-shifting media of the lidar laser source for obtaining the vertical profiles of tropospheric ozone in the Planetary Boundary Layer (PBL) is a suitable choice. As a compact movable lidar system, the results demonstrate the reliability and stability.

9.
Proteomics Clin Appl ; 13(4): e1800086, 2019 07.
Article in English | MEDLINE | ID: mdl-30516354

ABSTRACT

PURPOSE: Damage to the uterosacral ligaments is an important contributor to uterine and vaginal prolapse. The aim of this study is to identify differentially expressed proteins (DEPs) in the uterosacral ligaments of women with and without pelvic organ prolapse (POP) and analyze their relationships to cellular mechanisms involved in the pathogenesis of POP. EXPERIMENTAL DESIGN: Uterosacral ligament connective tissue from four patients with POP and four control women undergo iTRAQ analysis followed by ingenuity pathway analysis (IPA) of DEPs. DEPs are validated using Western blot analysis. RESULTS: A total of 1789 unique protein sequences are identified in the uterosacral ligament connective tissues. The expression levels of 88 proteins are significantly different between prolapse and control groups (≥1.2-fold, p < 0.05). IPA demonstrates the association of 14 DEPs with "Connective Tissue Function." Among them, fibromodulin, collagen alpha-1 (XIV) chain, calponin-1, tenascin, and galectin-1 appear most likely to play a role in the etiology of POP. CONCLUSIONS AND CLINICAL RELEVANCE: At least six proteins not previously associated with the pathogenesis of POP with biologic functions that suggest a plausible relationship to the disorder are identified. These results may be helpful for furthering the understanding of the pathophysiological mechanisms of POP.


Subject(s)
Gene Expression Regulation , Ligaments/metabolism , Pelvic Organ Prolapse/metabolism , Proteome/biosynthesis , Proteomics , Adult , Female , Humans , Ligaments/pathology , Middle Aged , Pelvic Organ Prolapse/pathology
10.
Proc Math Phys Eng Sci ; 472(2193): 20160410, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27713663

ABSTRACT

The equations governing the appearance of flexural static perturbations at the edge of a semi-infinite thin elastic isotropic plate, subjected to a state of homogeneous bi-axial pre-stress, are derived and solved. The plate is incompressible and supported by a Winkler elastic foundation with, possibly, wavenumber dependence. Small perturbations superposed onto the homogeneous state of pre-stress, within the three-dimensional elasticity theory, are considered. A series expansion of the plate kinematics in the plate thickness provides a consistent expression for the second variation of the potential energy, whose minimization gives the plate governing equations. Consistency considerations supplement a constraint on the scaling of the pre-stress so that the classical Kirchhoff-Love linear theory of pre-stretched elastic plates is retrieved. Moreover, a scaling constraint for the foundation stiffness is also introduced. Edge wrinkling is investigated and compared with body wrinkling. We find that the former always precedes the latter in a state of uni-axial pre-stretch, regardless of the foundation stiffness. By contrast, a general bi-axial pre-stretch state may favour body wrinkling for moderate foundation stiffness. Wavenumber dependence significantly alters the predicted behaviour. The results may be especially relevant to modelling soft biological materials, such as skin or tissues, or stretchable organic thin-films, embedded in a compliant elastic matrix.

SELECTION OF CITATIONS
SEARCH DETAIL
...