Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37050056

ABSTRACT

MYB transcription factors constitute one of the largest gene families in plants and play essential roles in the regulation of plant growth, responses to stress, and a wide variety of physiological and biochemical processes. In this study, 204 MYB proteins (HhMYBs) were identified in the Hibiscus hamabo Sieb. et Zucc (H. hamabo) genome and systematically analyzed based on their genomic sequence and transcriptomic data. The candidate HhMYB proteins and MYBs of Arabidopsis thaliana were divided into 28 subfamilies based on the analysis of their phylogenetic relationships and their motif patterns. Expression analysis using RNA-seq and quantitative real-time PCR (qRT-PCR) indicated that most HhMYBs are differentially regulated under drought and salt stresses. qRT-PCR analysis of seven selected HhMYBs suggested that the HhMYB family may have regulatory roles in the responses to stress and hormones. This study provides a framework for a more comprehensive analysis of the role of MYBs in the response to abiotic stress in H. hamabo.

2.
Int J Mol Sci ; 23(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35328474

ABSTRACT

NAC transcription factor is one of the largest plant gene families, participating in the regulation of plant biological and abiotic stresses. In this study, 182 NAC proteins (HhNACs) were identified based on genomic datasets of Hibiscus hamabo Sieb. et Zucc (H. hamabo). These proteins were divided into 19 subfamilies based on their phylogenetic relationship, motif pattern, and gene structure analysis. Expression analysis with RNA-seq revealed that most HhNACs were expressed in response to drought and salt stress. Research of quantitative real-time PCR analysis of nine selected HhNACs supported the transcriptome data's dependability and suggested that HhNAC54 was significantly upregulated under multiple abiotic stresses. Overexpression of HhNAC54 in Arabidopsis thaliana (A. thaliana) significantly increased its tolerance to salt. This study provides a basis for a comprehensive analysis of NAC transcription factor and insight into the abiotic stress response mechanism in H. hamabo.


Subject(s)
Arabidopsis , Hibiscus , Arabidopsis/genetics , Arabidopsis/metabolism , Droughts , Gene Expression Regulation, Plant , Hibiscus/genetics , Hibiscus/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Int J Mol Sci ; 22(16)2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34445454

ABSTRACT

The basic helix-loop-helix (bHLH) family of transcription factors is one of the most significant and biggest in plants. It is involved in the regulation of both growth and development, as well as stress response. Numerous members of the bHLH family have been found and characterized in woody plants in recent years. However, no systematic study of the bHLH gene family has been published for Hibiscus hamabo Sieb. et Zucc. In this research, we identified 162 bHLH proteins (HhbHLHs) from the genomic and transcriptomic datasets of H. hamabo, which were phylogenetically divided into 19 subfamilies. According to a gene structural study, the number of exon-introns in HhbHLHs varied between zero and seventeen. MEME research revealed that the majority of HhbHLH proteins contained three conserved motifs, 1, 4, and 5. The examination of promoter cis-elements revealed that the majority of HhbHLH genes had several cis-elements involved in plant growth and development and abiotic stress responses. In addition, the overexpression of HhbHLH2 increased salt and drought stress tolerance in Arabidopsis.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Gene Expression Regulation, Plant , Hibiscus , Plant Proteins , Salt Stress , Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Basic Helix-Loop-Helix Transcription Factors/genetics , Dehydration/genetics , Dehydration/metabolism , Genome-Wide Association Study , Hibiscus/genetics , Hibiscus/metabolism , Plant Proteins/biosynthesis , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...