Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ISA Trans ; 149: 381-393, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604873

ABSTRACT

Motor bearing fault diagnosis is essential to guarantee production efficiency and avoid catastrophic accidents. Deep learning-based methods have been developed and widely used for fault diagnosis, and these methods have proven to be very effective in accurately diagnosing bearing faults. In this paper, study the application of generative adversarial networks (GANs) in motor bearing fault diagnosis to address the practical issue of insufficient fault data in industrial testing. Focus on the auxiliary classifier generative adversarial network (ACGAN), and the data expansion is carried out for small datasets. This paper present a novel transformer network and auxiliary classifier generative adversarial network (TRA-ACGAN) for motor bearing fault diagnosis, where the TRA-ACGAN combines an ACGAN with a transformer network to avoid the traditional iterative and convolutional structures. The attention mechanism is fully utilized to extract more effective features, and the dual-task coupling problem encountered in classical ACGANs is avoided. Experimental results with the CWRU dataset and the PU dataset in the field of motor bearing fault diagnosis demonstrate the suitability and superiority of the TRA-ACGAN.

2.
Chemosphere ; 289: 133207, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34890619

ABSTRACT

Crude oil contamination greatly influence soil bacterial community. Proliferative microbes in the crude oil-contaminated soil are closely related to the living conditions. Oil wells in the Yellow River Delta Natural Reserve (YRDNR) region is an ideal site for investigating the bacterial community of crude oil-contaminated saline soil. In the present study, 18 soil samples were collected from the depths of 0-20 cm and 20-40 cm around the oil wells in the YRDNR. The bacterial community profile was analyzed through high-throughput sequencing to trace the oil-degrading aerobic and anaerobic bacteria. The results indicated that C15-C28 and C29-C38 were the main fractions of total petroleum hydrocarbon (TPH) in the sampled soil. These TPH fractions had a significant negative effect on bacterial biodiversity (Shannon, Simpson, and Chao1 indices), which led to the proliferation of hydrocarbon-degrading bacteria. A comprehensive analysis between the environmental factors and soil microbial community structure showed that Streptococcus, Bacillus, Sphingomonas, and Arthrobacter were the aerobic hydrocarbon-degrading bacteria; unidentified Rhodobacteraceae and Porticoccus were considered to be the possible facultative anaerobic bacteria with hydrocarbon biodegradation ability; Acidithiobacillus, SAR324 clade, and Nitrosarchaeum were predicted to be the anaerobic hydrocarbon-degrading bacteria in the sub-surface soil. Furthermore, large amount of carbon sources derived from TPH was found to cause depletion of bioavailable nitrogen in the soil. The bacteria associated with nitrogen transformation, such as Solirubrobacter, Candidatus Udaeobacter, Lysinibacillus, Bradyrhizobium, Sphingomonas, Mycobacterium, and Acidithiobacillus, were highly abundant; these bacteria may possess the ability to increase nitrogen availability in the crude oil-contaminated soil. The bacterial community functions were significantly different between the surface and the sub-surface soil, and the dissolved oxygen concentration in soil was considered to be potential influencing factor. Our results could provide useful information for the bioremediation of crude oil-contaminated saline soil.


Subject(s)
Petroleum , Soil Pollutants , Bacteria/genetics , Biodegradation, Environmental , Hydrocarbons , Rivers , Soil , Soil Microbiology , Soil Pollutants/analysis
3.
ACS Pharmacol Transl Sci ; 4(2): 858-869, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33860208

ABSTRACT

GLP-1 agonists have become increasingly interesting as a new Parkinson's disease (PD) clinical treatment strategy. Additional preclinical studies are important to validate this approach and define the disease stage when they are most effective. We hence characterized the efficacy of PT320, a sustained release formulation of the long acting GLP-1 agonist, exenatide, in a progressive PD (MitoPark) mouse model. A clinically translatable biweekly PT320 dose was administered starting at 5 weeks of age and longitudinally evaluated to 24 weeks, and multiple behavioral/cellular parameters were measured. PT320 significantly improved spontaneous locomotor activity and rearing in MitoPark PD mice. "Motivated" behavior also improved, evaluated by accelerating rotarod performance. Behavioral improvement was correlated with enhanced cellular and molecular indices of dopamine (DA) midbrain function. Fast scan cyclic voltammetry demonstrated protection of striatal and nucleus accumbens DA release and reuptake in PT320 treated MitoPark mice. Positron emission tomography showed protection of striatal DA fibers and tyrosine hydroxylase protein expression was augmented by PT320 administration. Early PT320 treatment may hence provide an important neuroprotective therapeutic strategy in PD.

4.
J Hazard Mater ; 398: 123007, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32512461

ABSTRACT

Sulfite is recently found to be promising in enhancing photocatalytic pollutants degradation, which is a byproduct from flue gas desulfuration process. Herein, 4-chlorophenol (4-CP) photodegradation was systematically investigated in a sulfite mediated system with g-C3N4 as photocatalyst. The degradation efficacy was improved by about 3 times with addition of 25 mM Na2SO3. The dominant responsible reactive oxygen species for chlorophenols remediation in the presence of sulfite included O2·-, SO3·-, and SO4·- as confirmed by radical quenching experiments and electron spin resonances technology. In-situ DRIFTs results indicated the improved cleavage of CCl and CH bonds with the simultaneous formation of CO and CC bonds when bisulfite was added. Degradation intermediates such as 4-chlorocatechol, hydroquinone, and muconic acid were detected by HPLC-MS. Furthermore, the photodegradation mechanisms of 4-CP were tentatively discussed . Other chlorophenols (phenol, 2-CP, 2,4-DCP, and their mixture) were also efficiently removed in the system, suggesting that sulfite could be universally applied in photocatalytic wastewater purification.

5.
Sci Total Environ ; 703: 135481, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31759707

ABSTRACT

PM2.5 pollution poses a negative effect on human health and economic growth. However, the major socioeconomic driving forces of global PM2.5 pollution during a long-term period remained unclear. In this study, we explored the potential association between socioeconomic indicators and the PM2.5 level worldwide using a spatial econometric model coupled with a geographical and temporal weighted regression (GTWR). The results suggested that renewable energy consumption ratio, per capita gross domestic production (GDP), per capita CO2 emission, urban population ratio, and fossil fuel consumption ratio were major factors responsible for the global PM2.5 pollution. The impacts of socioeconomic indicators on the PM2.5 level varied with the income-level and time. Fossil fuel consumption ratio, per capita CO2 emission, urban population ratio were major contributors for severe PM2.5 pollution in the developing countries (e.g., China and India). Further, these impacts have become more remarkable in recent years. Per capita GDP still played a crucial role on the PM2.5 pollution in India, indicating that energy-intensive industries were major contributors to its economic growth, thereby leading to the higher PM2.5 concentration in India. However, China has strode across the inflection of Environmental Kuznets Curve (EKC) as a whole and decreased the reliance on the secondary industries. Compared with the developing countries, the impacts of socioeconomic indicators on PM2.5 pollution in most of the developed countries remained relatively stable and weak, implicating that fossil fuel consumption and urbanization were not major contributors for local PM2.5 level. The findings of this study clarified major contributors for PM2.5 pollution, and provided scientific basis for mitigating the PM2.5 pollution.

6.
Mol Cell Endocrinol ; 430: 115-24, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27107937

ABSTRACT

OX40/OX40L pathway plays a very important role in the antigen priming T cells and effector T cells. In the present study, we aimed to examine the involvement of OX40/OX40L pathway in the activation of autoreactive T cells in patients with Grave's disease (GD). We found that OX40 and OX40L were constitutively coexpressed on peripheral CD4(+) T cells from GD patients using flow cytometry analysis. The levels of OX40 and OX40L coexpression on CD4(+) T cells were shown to be correlated with TRAbs. Cell proliferation assay showed that blocking OX40/OX40L signal inhibited T cell proliferation and survival, which suggested that OX40/OX40L could enhance CD4(+) T cell proliferation and maintain their long-term survival in GD by self-enhancing loop of T cell activation independent of APCs. Confocal microscopy and coimmunoprecipitation analysis further revealed that OX40 and OX40L formed a functional complex, which may facilitate signal transduction from OX40L to OX40 and contribute to the pathogenesis of GD.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Graves Disease/immunology , Graves Disease/metabolism , OX40 Ligand/metabolism , Receptors, OX40/metabolism , Adult , Autoantibodies/immunology , Cell Proliferation , Cell Survival/immunology , Female , Humans , Jurkat Cells , Lymphocyte Activation/immunology , Male , Receptors, Thyrotropin/immunology , Up-Regulation
7.
J Med Food ; 15(6): 535-41, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22424458

ABSTRACT

Drinking deep seawater (DSW) with high levels of magnesium (Mg) decreased serum lipids in animal studies. Therefore the effects of drinking DSW on blood lipids and its antioxidant capacity in hypercholesterolemic subjects were investigated. DSW was first prepared by a process of filtration and reverse osmosis, and then the concentrated DSW with high levels of Mg was diluted as drinking DSW. Forty-two hypercholesterolemic volunteers were randomly divided into three groups: reverse osmotic (RO) water, DSW (Mg: 395 mg/L, hardness 1410 ppm), and magnesium-chloride fortified (MCF) water (Mg: 386 mg/L, hardness 1430 ppm). The subjects drank 1050 mL of water daily for 6 weeks, and blood samples were collected and analyzed on weeks 0, 3, and 6. Drinking DSW caused a decrease in blood total cholesterol levels and this effect was progressively enhanced with time. Serum low-density lipoprotein-cholesterol (LDL-C) was also decreased by DSW. Further, total cholesterol levels of subjects in the DSW group were significantly lower than those in the MCF water or RO water groups. Compared with week 0, the DSW group had higher blood Mg level on weeks 3 and 6, but the Mg levels were within the normal range in all three groups. DSW consumption also lowered thiobarbituric acid-reactive substances (TBARS) values in serum. In conclusion, DSW was apparently effective in reducing blood total cholesterol and LDL-C, and also in decreasing lipid peroxidation in hypercholesterolemic subjects.


Subject(s)
Anticholesteremic Agents/pharmacology , Antioxidants/pharmacology , Cholesterol, LDL/blood , Cholesterol/blood , Hypercholesterolemia/drug therapy , Magnesium/pharmacology , Seawater/chemistry , Adult , Female , Filtration , Humans , Hypercholesterolemia/blood , Magnesium Chloride/pharmacology , Male , Middle Aged , Osmosis , Thiobarbituric Acid Reactive Substances/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...