Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Stem Cell ; 30(12): 1624-1639.e8, 2023 12 07.
Article in English | MEDLINE | ID: mdl-37989316

ABSTRACT

Reactivating silenced γ-globin expression through the disruption of repressive regulatory domains offers a therapeutic strategy for treating ß-hemoglobinopathies. Here, we used transformer base editor (tBE), a recently developed cytosine base editor with no detectable off-target mutations, to disrupt transcription-factor-binding motifs in hematopoietic stem cells. By performing functional screening of six motifs with tBE, we found that directly disrupting the BCL11A-binding motif in HBG1/2 promoters triggered the highest γ-globin expression. Via a side-by-side comparison with other clinical and preclinical strategies using Cas9 nuclease or conventional BEs (ABE8e and hA3A-BE3), we found that tBE-mediated disruption of the BCL11A-binding motif at the HBG1/2 promoters triggered the highest fetal hemoglobin in healthy and ß-thalassemia patient hematopoietic stem/progenitor cells while exhibiting no detectable DNA or RNA off-target mutations. Durable therapeutic editing by tBE persisted in repopulating hematopoietic stem cells, demonstrating that tBE-mediated editing in HBG1/2 promoters is a safe and effective strategy for treating ß-hemoglobinopathies.


Subject(s)
Gene Editing , Hemoglobinopathies , Humans , Fetal Hemoglobin/genetics , Fetal Hemoglobin/metabolism , gamma-Globins/genetics , gamma-Globins/metabolism , CRISPR-Cas Systems , Mutation/genetics , Hemoglobinopathies/genetics , Hemoglobinopathies/metabolism , Hematopoietic Stem Cells/metabolism , Transcription Factors/metabolism
2.
CRISPR J ; 5(2): 276-293, 2022 04.
Article in English | MEDLINE | ID: mdl-35294852

ABSTRACT

Prime editors (PEs) were developed to induce versatile edits at a guide-specified genomic locus. With all RNA-guided genome editors, guide-dependent off-target (OT) mutations can occur at other sites bearing similarity to the intended target. However, whether PEs carry the additional risk of guide-independent mutations elicited by their unique enzymatic moiety (i.e., reverse transcriptase) has not been examined systematically in mammalian cells. Here, we developed a cost-effective sensitive platform to profile guide-independent OT effects in human cells. We did not observe guide-independent OT mutations in the DNA or RNA of prime editor 3 (PE3)-edited cells, or alterations to their telomeres, endogenous retroelements, alternative splicing events, or gene expression. Together, our results showed undetectable prime editing guide RNA-independent OT effects of PE3 in human cells, suggesting the high editing specificity of its reverse-transcriptase moiety.


Subject(s)
Gene Editing , RNA, Guide, Kinetoplastida , Animals , CRISPR-Cas Systems/genetics , Gene Editing/methods , Humans , Mammals/genetics , RNA/genetics , RNA, Guide, Kinetoplastida/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL