Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
PLoS One ; 18(7): e0274439, 2023.
Article in English | MEDLINE | ID: mdl-37428732

ABSTRACT

The relationship of food comminution and individual age in Tupaia belangeri is investigated. It is hypothesized that with increasing age the performance of the molar dentition decreases due to progressive tooth wear. While this relationship is well-documented for herbivores, age-related test series are largely lacking for insectivorous mammals. 15 individuals of Tupaia belangeri were fed exclusively with mealworms, and their faeces were analyzed for the number and size of chitin particles. The exoskeleton of a mealworm is resistant to digestive fluids in the gastrointestinal tract, and the size of individual chitin particles indicates the effectiveness of mechanical comminution that occurs in the oral cavity during mastication. It is hypothesized that a more precise occlusion of the dentition results in smaller particle size. Although individuals of all ages (juvenile, adult, and senile) were able to effectively process mealworms with their dentition prior to digestion, a larger area of very large chitin particles (98% quantile of all particles in senile animals as compared to in the same quantile in adults) in the feces of senile animals was detected. Even though the particle size of indigestible material is irrelevant for the digestive process, these findings either document somatic senescence in the functionality of the teeth, or alternatively a change in chewing behaviour with age.


Subject(s)
Food , Tupaia , Animals , Mastication , Feces , Digestive System Physiological Phenomena , Mammals , Particle Size
2.
Neurobiol Aging ; 129: 121-136, 2023 09.
Article in English | MEDLINE | ID: mdl-37302213

ABSTRACT

Astrocytes perform multiple essential functions in the brain showing morphological changes. Hypertrophic astrocytes are commonly observed in cognitively healthy aged animals, implying a functional defense mechanism without losing neuronal support. In neurodegenerative diseases, astrocytes show morphological alterations, such as decreased process length and reduced number of branch points, known as astroglial atrophy, with detrimental effects on neuronal cells. The common marmoset (Callithrix jacchus) is a non-human primate that, with age, develops several features that resemble neurodegeneration. In this study, we characterize the morphological alterations in astrocytes of adolescent (mean 1.75 y), adult (mean 5.33 y), old (mean 11.25 y), and aged (mean 16.83 y) male marmosets. We observed a significantly reduced arborization in astrocytes of aged marmosets compared to younger animals in the hippocampus and entorhinal cortex. These astrocytes also show oxidative damage to RNA and increased nuclear plaques in the cortex and tau hyperphosphorylation (AT100). Astrocytes lacking S100A10 protein show a more severe atrophy and DNA fragmentation. Our results demonstrate the presence of atrophic astrocytes in the brains of aged marmosets.


Subject(s)
Astrocytes , Callithrix , Animals , Male , Callithrix/physiology , DNA Fragmentation , Astrocytes/metabolism , RNA/metabolism , Entorhinal Cortex , Atrophy
3.
Br J Pharmacol ; 179(6): 1146-1186, 2022 03.
Article in English | MEDLINE | ID: mdl-34822719

ABSTRACT

Major depressive disorder is a leading cause of disability worldwide. Because conventional therapies are ineffective in many patients, novel strategies are needed to overcome treatment-resistant depression (TRD). Limiting factors of successful drug development in the last decades were the lack of (1) knowledge of pathophysiology, (2) translational animal models and (3) objective diagnostic biomarkers. Here, we review novel drug targets and drug candidates currently investigated in Phase I-III clinical trials. The most promising approaches are inhibition of glutamatergic neurotransmission by NMDA and mGlu5 receptor antagonists, modulation of the opioidergic system by κ receptor antagonists, and hallucinogenic tryptamine derivates. The only registered drug for TRD is the NMDA receptor antagonist, S-ketamine, but add-on therapies with second-generation antipsychotics, certain nutritive, anti-inflammatory and neuroprotective agents seem to be effective. Currently, there is an intense research focus on large-scale, high-throughput omics and neuroimaging studies. These results might provide new insights into molecular mechanisms and potential novel therapeutic strategies.


Subject(s)
Depressive Disorder, Major , Depressive Disorder, Treatment-Resistant , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/drug therapy , Depressive Disorder, Major/drug therapy , Depressive Disorder, Treatment-Resistant/drug therapy , Drug Development , Humans
4.
Glia ; 68(9): 1775-1793, 2020 09.
Article in English | MEDLINE | ID: mdl-32096580

ABSTRACT

Aging is a major risk factor for the development of neurodegenerative diseases. Alzheimer's disease and other neurodegenerative diseases are characterized by abnormal and prominent protein aggregation in the brain, partially due to deficiency in protein clearance. It has been proposed that alterations in microglia phagocytosis and debris clearance hasten the onset of neurodegeneration. Dystrophic microglia are abundant in aged humans, and it has been associated with the onset of disease. Furthermore, alterations in microglia containing ferritin are associated with neurodegenerative conditions. To further understand the process of microglia dysfunction during the aging process, we used hippocampal sections from Tupaia belangeri (tree shrews). Adult (mean age 3.8 years), old (mean age 6 years), and aged (mean age 7.5 years) tree shrews were used for histochemical and immunostaining techniques to determine ferritin and Iba1 positive microglia, iron tissue content, tau hyperphosphorylation and oxidized-RNA in dentate gyrus, subiculum, and CA1-CA3 hippocampal regions. Our results indicated that aged tree shrews presented an increased number of activated microglia containing ferritin, but microglia labeled with Iba1 with a dystrophic phenotype was more abundant in aged individuals. With aging, oxidative damage to RNA (8OHG) increased significantly in all hippocampal regions, while tau hyperphosphorylation (AT100) was enhanced in DG, CA3, and SUB in aged animals. Phagocytic inclusions of 8OHG- and AT100-damaged cells were observed in activated M2 microglia in old and aged animals. These data indicate that aged tree shrew may be a suitable model for translational research to study brain and microglia alterations during the aging process.


Subject(s)
Microglia , Tupaia , Animals , Child , Child, Preschool , Ferritins , Hippocampus , Humans , Oxidative Stress , RNA , Tupaiidae
5.
Neuroscience ; 439: 275-286, 2020 07 15.
Article in English | MEDLINE | ID: mdl-31954828

ABSTRACT

The use of antibodies to identify neuronal receptors, neurotransmitters, cytoskeletal elements or pathologic protein aggregates, ion channels, adhesion molecules or other cell-type specific markers, is common practice in neuroscience. Antibody detection systems are often based on confocal, epifluorescence or brightfield microscopy. Three types of technical issues can interfere with immunolabeling: low abundance of the target protein, low specific affinity of the antibody and/or signal background sometimes related to tissue fixation. Here, giving tribute to Professor Miledi's mentorship, we propose the application of an antibody signal enhancer (ASE) solution based on glycine, hydrogen peroxide and a detergent mix as a simple, low cost, protocol variation that significantly and specifically improves the signal to noise ratio during immunostaining experiments. We describe three new settings in which ASE improves the detection of a variety of antibodies applied on long-time stored non-human primate brain sections, cell culture monolayers and on squamous carcinomas retrieved from cervical cancer patients. The significant improvement of ASE over optimized immunohistochemical protocols used in clinical practice (i.e. cancer detection) combined with its simplicity and low cost makes it an attractive method for biomedical applications.


Subject(s)
Brain , Neoplasms , Animals , Biopsy , Cell Culture Techniques , Humans , Immunohistochemistry , Primates
6.
Mol Cell Endocrinol ; 504: 110670, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31801682

ABSTRACT

The molecular mechanisms regulating undifferentiated spermatogonial cell proliferation and differentiation are still not fully understood. Irisin is an exercise-induced hormone, which is a cleaved and secreted fragment of the fibronectin type III repeat containing 5 (FNDC5) transmembrane protein. Recent studies have demonstrated the role of irisin in cell proliferation and differentiation in various tissues. However, testicular irisin expression and its potential action have not been analyzed. Here, we demonstrate expression of irisin in undifferentiated spermatogonia of primates and in the tree shrew, a bridging species between primates and insectivores. Rhesus monkeys are seasonal breeders with annual phases of high and low testicular activity and germ cell proliferation. Interestingly, expression of both FNDC5 mRNA and irisin is altered between breeding (high spermatogenesis) and nonbreeding seasons (low spermatogenesis). Organotypic testis culture in the presence of irisin increased the expression levels of the Sertoli cell (GDNF) and spermatogonial transcripts Kruppel-like factor 4 (KLF4), Inhibitor of differentiation 4 (ID4), Cluster of differentiation 117 (cKIT), and SALL4, compared to untreated controls, while irisin suppressed its own FNDC5 mRNA. Our data suggest that irisin is a novel endocrine factor involved in the regulation of spermatogonial activities in the testes of primates.


Subject(s)
Fibronectins/genetics , Spermatogonia/metabolism , Animals , Cell Culture Techniques/veterinary , Cell Differentiation/genetics , Cells, Cultured , Fibronectins/metabolism , Gene Expression , Kruppel-Like Factor 4 , Macaca mulatta , Male , Sertoli Cells/metabolism , Spermatogenesis/genetics , Spermatogonia/physiology , Testis/metabolism
7.
Am J Primatol ; 81(2): e22956, 2019 02.
Article in English | MEDLINE | ID: mdl-30779205

ABSTRACT

Microglia are cells that protect brain tissue from invading agents and toxic substances, first by releasing pro-inflammatory cytokines, and thereafter by clearing tissue by phagocytosis. Microglia express ferritin, a protein with ferroxidase activity capable of storing iron, a metal that accumulates in brain during aging. Increasing evidence suggests that ferritin plays an important role in inflammation. However, it is not known if ferritin/iron content can be related to the activation state of microglia. To this end, we aimed to delineate the role of ferritin in microglia activation in a non-human primate model. We analyzed brains of male marmosets and observed an increased density of ferritin+ microglia with an activated phenotype in hippocampus and cortex of old marmosets (mean age 11.25 ± 0.70 years) compared to younger subjects. This was accompanied by an increased number of dystrophic microglia in old marmosets. However, in aged subjects (mean age 16.83 ± 2.59 years) the number of ferritin+ microglia was decreased compared to old ones. Meanwhile, the content of iron in brain tissue and cells with oxidized RNA increased during aging in all hippocampal and cortical regions analyzed. Abundant amoeboid microglia were commonly observed surrounding neurons with oxidized RNA. Notably, amoeboid microglia were arginase1+ and IL-10+, indicative of a M2 phenotype. Some of those M2 cells also presented RNA oxidation and a dystrophic phenotype. Therefore, our data suggest that ferritin confers protection to microglia in adult and old marmosets, while in aged subjects the decline in ferritin and the increased amount of iron in brain tissue may be related to the increased number of cells with oxidized RNA, perhaps precluding the onset of neurodegeneration.


Subject(s)
Aging , Callithrix/physiology , Ferritins/metabolism , Iron/metabolism , Microglia/pathology , Animals , Cerebral Cortex/pathology , Hippocampus/cytology , Hippocampus/pathology , Male , Microglia/chemistry , RNA/chemistry
8.
Primate Biol ; 6(2): 65-73, 2019.
Article in English | MEDLINE | ID: mdl-32110717

ABSTRACT

This study aimed to investigate the effect of estrogen withdrawal on bone tissue in adult female marmoset monkeys. In a 1-year follow-up study we used quantitative computer tomography to measure total bone mineral density (BMD) of the proximal tibia and the second-last lumbar vertebral body (L5/L6) before and 1, 3, 6, and 12 months after ovariectomy. Body mass did not significantly change during the 1-year observation period. However, a significant decline of total BMD after ovariectomy was observed in the proximal tibia but not in L5/L6. In addition, regression analysis showed a significant positive relationship between BMD and body mass in both tibia and L5/L6. The results of our study support the idea that ovariectomized marmoset monkeys may serve as a model to investigate bone loss related to decline of estrogen production.

9.
Acta Neuropathol ; 134(1): 15-34, 2017 07.
Article in English | MEDLINE | ID: mdl-28386765

ABSTRACT

Cortical demyelination is a widely recognized hallmark of multiple sclerosis (MS) and correlate of disease progression and cognitive decline. The pathomechanisms initiating and driving gray matter damage are only incompletely understood. Here, we determined the infiltrating leukocyte subpopulations in 26 cortical demyelinated lesions of biopsied MS patients and assessed their contribution to cortical lesion formation in a newly developed mouse model. We find that conformation-specific anti-myelin antibodies contribute to cortical demyelination even in the absence of the classical complement pathway. T cells and natural killer cells are relevant for intracortical type 2 but dispensable for subpial type 3 lesions, whereas CCR2+ monocytes are required for both. Depleting CCR2+ monocytes in marmoset monkeys with experimental autoimmune encephalomyelitis using a novel humanized CCR2 targeting antibody translates into significantly less cortical demyelination and disease severity. We conclude that biologics depleting CCR2+ monocytes might be attractive candidates for preventing cortical lesion formation and ameliorating disease progression in MS.


Subject(s)
Cerebral Cortex/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Monocytes/immunology , Multiple Sclerosis/immunology , Adult , Animals , Callithrix , Cerebral Cortex/pathology , Cohort Studies , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Male , Meninges/immunology , Meninges/pathology , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Monocytes/pathology , Multiple Sclerosis/pathology , Random Allocation , Receptors, CCR2/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/pathology
11.
Neurobiol Stress ; 6: 94-103, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28229112

ABSTRACT

Human psychological stress is the major environmental risk factor for major depression and certain of the anxiety disorders. Psychological stressors often occur in the context of the adult social environment, and they or the memory formed of them impact on the individual across an extended period, thereby constituting chronic psychosocial stress (CPS). Psychosocial stressors often involve loss to the individual, such as the ending of a social relationship or the onset of interpersonal conflict leading to loss of social control and predictability. Given the difficulty in studying the etio-pathophysiological processes mediating between CPS and brain and behavior pathologies in human, considerable effort has been undertaken to study manipulations of the social environment that constitute adulthood chronic psychosocial stressors in other mammals. The majority of such research has been conducted in rodents; the focus for a considerable time period was on rats and more recently both rats and mice have been investigated, the latter species in particular providing the opportunity for essential gene x chronic psychosocial stressor interaction studies. Key studies in the tree shrew demonstrate that this approach should not be limited to rodents, however. The animal adult CPS paradigms are based on resident-intruder confrontations. These are typified by the intruder-subject's brief proximate interactions with and attacks by, and otherwise continuous distal exposure to, the resident stressor. In contrast to humans where cognitive capacities are such that the stressor pertains in its physical absence, the periods of continuous distal exposure are apparently essential in these species. Whilst the focus of this review is on the stressor rather than the stress response, we also describe some of the depression- and anxiety disorder-relevant effects on behavior, physiology and brain structure-function of chronic psychosocial stressors, as well as evidence for the predictive validity of such models in terms of chronic antidepressant efficacy. Nonetheless, there are limitations in the methods used to date, most importantly the current emphasis on studying CPS in males, despite the much higher disorder prevalence in women compared to men. Future studies will need to address these limitations.

12.
Front Aging Neurosci ; 9: 32, 2017.
Article in English | MEDLINE | ID: mdl-28232798

ABSTRACT

[This corrects the article on p. 315 in vol. 8, PMID: 28066237.].

13.
Eur Neuropsychopharmacol ; 27(3): 261-273, 2017 03.
Article in English | MEDLINE | ID: mdl-28119084

ABSTRACT

Communication is the act of information transfer between sender and receiver. In rats, vocal communication can be studied through ultrasonic vocalizations (USV). 50-kHz USV occur in appetitive situations, most notably juvenile play, likely expressing the sender׳s positive affective state. Such appetitive 50-kHz USV serve important pro-social communicative functions and elicit social exploratory and approach behavior in the receiver. Emission of 50-kHz USV can be induced pharmacologically by the administration of psychostimulant drugs, such as amphetamine. However, it is unknown whether amphetamine affects the pro-social communicative function of 50-kHz USV in the receiver. We therefore assessed dose-response effects of amphetamine (0.0mg/kg, 0.5mg/kg, 1.0mg/kg, 2.5mg/kg, 5.0mg/kg) on pro-social ultrasonic communication on both, sender and receiver, in juvenile rats. We found an inverted U-shaped effect of amphetamine on 50-kHz USV emission, with 50-kHz USV levels being strongly enhanced by moderate doses, yet less prominent effects were seen following the highest dose. Likewise, amphetamine exerted inverted U-shaped effects on social exploratory and approach behavior induced by playback of appetitive 50-kHz USV. Social approach was enhanced by moderate amphetamine doses, but completely abolished following the highest dose. Amphetamine further dose-dependently promoted the emission of 50-kHz USV following playback of appetitive 50-kHz USV, indicating more vigorous attempts to establish social proximity. Our results support an important role of dopamine in closing a perception-and-action-loop through linking mechanisms relevant for detection and production of social vocalizations. Moreover, our approach possibly provides a new means to study mania-like aberrant social interaction and communication in animal models for bipolar disorder.


Subject(s)
Amphetamine/pharmacology , Central Nervous System Stimulants/pharmacology , Ultrasonics/methods , Vocalization, Animal/drug effects , Analysis of Variance , Animals , Avoidance Learning/drug effects , Dose-Response Relationship, Drug , Exploratory Behavior/drug effects , Hyperkinesis/chemically induced , Maze Learning/drug effects , Rats , Rats, Wistar
14.
Neurobiol Dis ; 96: 335-345, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27425888

ABSTRACT

In Parkinson's disease midbrain dopaminergic neurons degenerate and die. Oral medications and deep brain stimulation can relieve the initial symptoms, but the disease continues to progress. Growth factors that might support the survival, enhance the activity, or even regenerate degenerating dopamine neurons have been tried with mixed results in patients. As growth factors do not pass the blood-brain barrier, they have to be delivered intracranially. Therefore their efficient diffusion in brain tissue is of crucial importance. To improve the diffusion of the growth factor neurturin (NRTN), we modified its capacity to attach to heparan sulfates in the extracellular matrix. We present four new, biologically fully active variants with reduced heparin binding. Two of these variants are more stable than WT NRTN in vitro and diffuse better in rat brains. We also show that one of the NRTN variants diffuses better than its close homolog GDNF in monkey brains. The variant with the highest stability and widest diffusion regenerates dopamine fibers and improves the conditions of rats in a 6-hydroxydopamine model of Parkinson's disease more potently than GDNF, which previously showed modest efficacy in clinical trials. The new NRTN variants may help solve the major problem of inadequate distribution of NRTN in human brain tissue.


Subject(s)
Drug Design , Genetic Variation/genetics , Neurturin/chemistry , Neurturin/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Amphetamine/pharmacology , Animals , CHO Cells , Cricetulus , Disease Models, Animal , Humans , Macaca fascicularis , Male , Models, Molecular , Neurturin/genetics , Oxidopamine/toxicity , Parkinson Disease/complications , Parkinson Disease/etiology , Proto-Oncogene Proteins c-ret/genetics , Proto-Oncogene Proteins c-ret/metabolism , Rats , Rats, Wistar , Stereotyped Behavior/drug effects , Sympatholytics/toxicity , Tyrosine 3-Monooxygenase/metabolism
15.
J Med Primatol ; 45(6): 290-296, 2016 12.
Article in English | MEDLINE | ID: mdl-27417149

ABSTRACT

BACKGROUND: This study determined the pharmacokinetics of the contrast agent gadobutrol in marmosets by quantitative MRI to derive guidelines for neuroimaging protocols. METHODS: Local concentrations of gadobutrol were determined from consecutive gradient echo-based mapping of the relaxation rate R1 on a clinical 3T MRI scanner. Half-time of renal elimination was measured after injection of a triple dose of gadobutrol (0.3 mmol/kg) into the saphenous vein. A first-order single-compartment model was fitted to the measured R1 values and verified by blood analysis. RESULTS: Slow injection (1.5 minutes) resulted in an elimination half-time of 26±4 minutes. After bolus injection (15 seconds), elimination was much slower (62±8 minutes) with 45% larger distribution volumes. Importantly, more gadobutrol entered the cerebrospinal fluid. CONCLUSIONS: Slow injection and a latency of about 20 minutes are recommended to avoid extravasation. Application of a triple dose of gadobutrol compensates for the fast elimination in healthy marmosets.


Subject(s)
Callithrix/blood , Contrast Media/pharmacokinetics , Organometallic Compounds/pharmacokinetics , Animals , Female , Magnetic Resonance Imaging , Male , Organometallic Compounds/blood
16.
PLoS One ; 11(2): e0149776, 2016.
Article in English | MEDLINE | ID: mdl-26901822

ABSTRACT

Cerebral dopamine neurotrophic factor (CDNF) belongs to a newly discovered family of evolutionarily conserved neurotrophic factors. We demonstrate for the first time a therapeutic effect of CDNF in a unilateral 6-hydroxydopamine (6-OHDA) lesion model of Parkinson's disease in marmoset monkeys. Furthermore, we tested the impact of high chronic doses of human recombinant CDNF on unlesioned monkeys and analyzed the amino acid sequence of marmoset CDNF. The severity of 6-OHDA lesions and treatment effects were monitored in vivo using 123I-FP-CIT (DaTSCAN) SPECT. Quantitative analysis of 123I-FP-CIT SPECT showed a significant increase of dopamine transporter binding activity in lesioned animals treated with CDNF. Glial cell line-derived neurotrophic factor (GDNF), a well-characterized and potent neurotrophic factor for dopamine neurons, served as a control in a parallel comparison with CDNF. By contrast with CDNF, only single animals responded to the treatment with GDNF, but no statistical difference was observed in the GDNF group. However, increased numbers of tyrosine hydroxylase immunoreactive neurons, observed within the lesioned caudate nucleus of GDNF-treated animals, indicate a strong bioactive potential of GDNF.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor/metabolism , Nerve Growth Factors/metabolism , Parkinson Disease/metabolism , Animals , Callithrix , Disease Models, Animal , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Magnetic Resonance Imaging , Oxidopamine/pharmacology , Tomography, Emission-Computed, Single-Photon
17.
Front Aging Neurosci ; 8: 315, 2016.
Article in English | MEDLINE | ID: mdl-28066237

ABSTRACT

Common marmosets (Callithrix jacchus) have recently gained popularity in biomedical research as models of aging research. Basically, they confer advantages from other non-human primates due to their shorter lifespan with onset of appearance of aging at 8 years. Old marmosets present some markers linked to neurodegeneration in the brain such as amyloid beta (Aß)1-42 and Aß1-40. However, there are no studies exploring other cellular markers associated with neurodegenerative diseases in this non-human primate. Using immunohistochemistry, we analyzed brains of male adolescent, adult, old, and aged marmosets. We observed accumulation of Aß1-40 and Aß1-42 in the cortex of aged subjects. Tau hyperphosphorylation was already detected in the brain of adolescent animals and increased with aging in a more fibrillary form. Microglia activation was also observed in the aging process, while a dystrophic phenotype accumulates in aged subjects. Interestingly, dystrophic microglia contained hyperphosphorylated tau, but active microglia did not. These results support previous findings regarding microglia dysfunctionality in aging and neurodegenerative diseases as Alzheimer's disease. Further studies should explore the functional consequences of these findings to position this non-human primate as animal model of aging and neurodegeneration.

18.
Brain Pathol ; 26(4): 452-64, 2016 07.
Article in English | MEDLINE | ID: mdl-26207848

ABSTRACT

Multiple sclerosis (MS) is the most common cause for sustained disability in young adults, yet treatment options remain very limited. Although numerous therapeutic approaches have been effective in rodent models of experimental autoimmune encephalomyelitis (EAE), only few proved to be beneficial in patients with MS. Hence, there is a strong need for more predictive animal models. Within the past decade, EAE in the common marmoset evolved as a potent, alternative model for MS, with immunological and pathological features resembling more closely the human disease. However, an often very rapid and severe disease course hampers its implementation for systematic testing of new treatment strategies. We here developed a new focal model of EAE in the common marmoset, induced by myelin oligodendrocyte glycoprotein (MOG) immunization and stereotactic injections of proinflammatory cytokines. At the injection site of cytokines, confluent inflammatory demyelinating lesions developed that strongly resembled human MS lesions. In a proof-of-principle treatment study with the immunomodulatory compound laquinimod, we demonstrate that targeted EAE in marmosets provides a promising and valid tool for preclinical experimental treatment trials in MS research.


Subject(s)
Callithrix , Encephalomyelitis, Autoimmune, Experimental , Animals , Cytokines/administration & dosage , Cytokines/immunology , Female , Male , Myelin-Oligodendrocyte Glycoprotein/administration & dosage , Myelin-Oligodendrocyte Glycoprotein/immunology
19.
Article in English | MEDLINE | ID: mdl-25891248

ABSTRACT

Major depressive disorder is a common, complex, and potentially life-threatening mental disorder that imposes a severe social and economic burden worldwide. Over the years, numerous animal models have been established to elucidate pathophysiology that underlies depression and to test novel antidepressant treatment strategies. Despite these substantial efforts, the animal models available currently are of limited utility for these purposes, probably because none of the models mimics this complex disorder fully. It is presumable that psychiatric illnesses, such as affective disorders, are related to the complexity of the human brain. Here, we summarize the animal models that are used most commonly for depression, and discuss their advantages and limitations. We discuss genetic models, including the recently developed optogenetic tools and the stress models, such as the social stress, chronic mild stress, learned helplessness, and early-life stress paradigms. Moreover, we summarize briefly the olfactory bulbectomy model, as well as models that are based on pharmacological manipulations and disruption of the circadian rhythm. Finally, we highlight common misinterpretations and often-neglected important issues in this field.


Subject(s)
Depressive Disorder/physiopathology , Disease Models, Animal , Animals , Brain/physiopathology , Depressive Disorder/genetics , Humans
20.
Article in English | MEDLINE | ID: mdl-26476437

ABSTRACT

BACKGROUND: Most currently available active antidepressant drugs are selective serotonin/noradrenaline reuptake inhibitors. However, as their clinical efficacy is not immediate, long-term administration is often accompanied by substantial side effects, and numerous patients remain non- or partial responders. We have recently found that the synthetic neurosteroid derivative 3ß-methoxypregnenolone, which binds to the microtubule-associated protein-2, can provide a novel therapeutic approach in experimental model of depressive disorders in rats. To further validate the antidepressant-like efficacy of 3ß-methoxypregnenolone, we investigated effects of a longer treatment (4-week oral administration; 50mg/kg/d) in a nonrodent species, the tree shrew, exposed to psychosocial stress that elicits close-to-human alterations observed in patients with depressive disorders. METHODS: During the experimental period, physiological parameters were registered, including core body temperature and electroencephalogram, while animals were videotaped to analyze their avoidance behavior. Morning urine samples were collected for measurements of cortisol and noradrenaline levels. RESULTS: We found that treatment with 3ß-methoxypregnenolone abolished stress-triggered avoidance behavior and prevented hormone hypersecretion, hypothermia, and sleep disturbances, further suggesting its antidepressant-like efficacy. Comparative treatment with fluoxetine also prevented some of the physiological alterations, while the hypersecretion of cortisol and sleep disturbances were not or partially restored by fluoxetine, suggesting a better efficacy of 3ß-methoxypregnenolone. Alpha-tubulin isoforms were measured in hippocampi: we found that 3ß-methoxypregnenolone reversed the specific decrease in acetylation of α-tubulin induced by psychosocial stress, while it did not modify the psychosocial stress-elicited reduction of tyrosinated α-tubulin. CONCLUSIONS: Taken together, these data strongly suggest a potent antidepressant-like effect of 3ß-methoxypregnenolone on translational parameters.


Subject(s)
Antidepressive Agents/pharmacology , Pregnenolone/analogs & derivatives , Stress, Psychological/drug therapy , Stress, Psychological/physiopathology , Administration, Oral , Animals , Antidepressive Agents/blood , Avoidance Learning/drug effects , Avoidance Learning/physiology , Body Temperature/drug effects , Body Temperature/physiology , Disease Models, Animal , Drug Evaluation, Preclinical , Hippocampus/drug effects , Hippocampus/metabolism , Hydrocortisone/urine , Male , Motor Activity/drug effects , Motor Activity/physiology , Norepinephrine/urine , Pregnenolone/blood , Pregnenolone/pharmacology , Sleep/drug effects , Sleep/physiology , Social Behavior , Tubulin/metabolism , Tupaiidae
SELECTION OF CITATIONS
SEARCH DETAIL
...