Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Elife ; 72018 08 02.
Article in English | MEDLINE | ID: mdl-30070637

ABSTRACT

Recent work suggests extensive adaptation of transposable elements (TEs) for host gene regulation. However, high numbers of integrations typical of TEs, coupled with sequence divergence within families, have made systematic interrogation of the regulatory contributions of TEs challenging. Here, we employ CARGO, our recent method for CRISPR gRNA multiplexing, to facilitate targeting of LTR5HS, an ape-specific class of HERVK (HML-2) LTRs that is active during early development and present in ~700 copies throughout the human genome. We combine CARGO with CRISPR activation or interference to, respectively, induce or silence LTR5HS en masse, and demonstrate that this system robustly targets the vast majority of LTR5HS insertions. Remarkably, activation/silencing of LTR5HS is associated with reciprocal up- and down-regulation of hundreds of human genes. These effects require the presence of retroviral sequences, but occur over long genomic distances, consistent with a pervasive function of LTR5HS elements as early embryonic enhancers in apes.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Developmental/genetics , Genome, Human/genetics , Terminal Repeat Sequences/genetics , Animals , DNA Transposable Elements , Endogenous Retroviruses/genetics , Hominidae/genetics , Humans , Regulatory Sequences, Nucleic Acid/genetics , Retroviridae/genetics
3.
Nature ; 544(7649): 245-249, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28379941

ABSTRACT

Normal differentiation and induced reprogramming require the activation of target cell programs and silencing of donor cell programs. In reprogramming, the same factors are often used to reprogram many different donor cell types. As most developmental repressors, such as RE1-silencing transcription factor (REST) and Groucho (also known as TLE), are considered lineage-specific repressors, it remains unclear how identical combinations of transcription factors can silence so many different donor programs. Distinct lineage repressors would have to be induced in different donor cell types. Here, by studying the reprogramming of mouse fibroblasts to neurons, we found that the pan neuron-specific transcription factor Myt1-like (Myt1l) exerts its pro-neuronal function by direct repression of many different somatic lineage programs except the neuronal program. The repressive function of Myt1l is mediated via recruitment of a complex containing Sin3b by binding to a previously uncharacterized N-terminal domain. In agreement with its repressive function, the genomic binding sites of Myt1l are similar in neurons and fibroblasts and are preferentially in an open chromatin configuration. The Notch signalling pathway is repressed by Myt1l through silencing of several members, including Hes1. Acute knockdown of Myt1l in the developing mouse brain mimicked a Notch gain-of-function phenotype, suggesting that Myt1l allows newborn neurons to escape Notch activation during normal development. Depletion of Myt1l in primary postmitotic neurons de-repressed non-neuronal programs and impaired neuronal gene expression and function, indicating that many somatic lineage programs are actively and persistently repressed by Myt1l to maintain neuronal identity. It is now tempting to speculate that similar 'many-but-one' lineage repressors exist for other cell fates; such repressors, in combination with lineage-specific activators, would be prime candidates for use in reprogramming additional cell types.


Subject(s)
Cell Lineage/genetics , Cellular Reprogramming/genetics , Gene Silencing , Nerve Tissue Proteins/metabolism , Neurogenesis/genetics , Neurons/cytology , Neurons/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism , Animals , Animals, Newborn , Brain/cytology , Brain/embryology , Brain/metabolism , Cells, Cultured , Chromatin/genetics , Chromatin/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Mice , Nerve Tissue Proteins/deficiency , Organ Specificity/genetics , Protein Domains , Receptors, Notch/deficiency , Repressor Proteins/chemistry , Repressor Proteins/deficiency , Signal Transduction , Transcription Factor HES-1/deficiency , Transcription Factors/deficiency
4.
Nature ; 514(7521): 228-32, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25119037

ABSTRACT

CHARGE syndrome is a multiple anomaly disorder in which patients present with a variety of phenotypes, including ocular coloboma, heart defects, choanal atresia, retarded growth and development, genitourinary hypoplasia and ear abnormalities. Despite 70-90% of CHARGE syndrome cases resulting from mutations in the gene CHD7, which encodes an ATP-dependent chromatin remodeller, the pathways underlying the diverse phenotypes remain poorly understood. Surprisingly, our studies of a knock-in mutant mouse strain that expresses a stabilized and transcriptionally dead variant of the tumour-suppressor protein p53 (p53(25,26,53,54)), along with a wild-type allele of p53 (also known as Trp53), revealed late-gestational embryonic lethality associated with a host of phenotypes that are characteristic of CHARGE syndrome, including coloboma, inner and outer ear malformations, heart outflow tract defects and craniofacial defects. We found that the p53(25,26,53,54) mutant protein stabilized and hyperactivated wild-type p53, which then inappropriately induced its target genes and triggered cell-cycle arrest or apoptosis during development. Importantly, these phenotypes were only observed with a wild-type p53 allele, as p53(25,26,53,54)(/-) embryos were fully viable. Furthermore, we found that CHD7 can bind to the p53 promoter, thereby negatively regulating p53 expression, and that CHD7 loss in mouse neural crest cells or samples from patients with CHARGE syndrome results in p53 activation. Strikingly, we found that p53 heterozygosity partially rescued the phenotypes in Chd7-null mouse embryos, demonstrating that p53 contributes to the phenotypes that result from CHD7 loss. Thus, inappropriate p53 activation during development can promote CHARGE phenotypes, supporting the idea that p53 has a critical role in developmental syndromes and providing important insight into the mechanisms underlying CHARGE syndrome.


Subject(s)
Abnormalities, Multiple/metabolism , CHARGE Syndrome/genetics , CHARGE Syndrome/metabolism , Phenotype , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Abnormalities, Multiple/genetics , Alleles , Animals , Apoptosis/genetics , Cell Cycle Checkpoints/genetics , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/metabolism , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Ear/abnormalities , Embryo, Mammalian/abnormalities , Embryo, Mammalian/metabolism , Female , Fibroblasts , Gene Deletion , Heterozygote , Humans , Male , Mice , Mutant Proteins/metabolism , Promoter Regions, Genetic/genetics
5.
Cell ; 155(3): 621-35, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24243019

ABSTRACT

Direct lineage reprogramming is a promising approach for human disease modeling and regenerative medicine, with poorly understood mechanisms. Here, we reveal a hierarchical mechanism in the direct conversion of fibroblasts into induced neuronal (iN) cells mediated by the transcription factors Ascl1, Brn2, and Myt1l. Ascl1 acts as an "on-target" pioneer factor by immediately occupying most cognate genomic sites in fibroblasts. In contrast, Brn2 and Myt1l do not access fibroblast chromatin productively on their own; instead, Ascl1 recruits Brn2 to Ascl1 sites genome wide. A unique trivalent chromatin signature in the host cells predicts the permissiveness for Ascl1 pioneering activity among different cell types. Finally, we identified Zfp238 as a key Ascl1 target gene that can partially substitute for Ascl1 during iN cell reprogramming. Thus, a precise match between pioneer factors and the chromatin context at key target genes is determinative for transdifferentiation to neurons and likely other cell types.


Subject(s)
Cellular Reprogramming , Embryo, Mammalian/cytology , Fibroblasts/cytology , Gene Regulatory Networks , Neurons/cytology , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation , Chromatin/metabolism , Fibroblasts/metabolism , Genome-Wide Association Study , Humans , Mice , Nerve Tissue Proteins/metabolism , Neurons/metabolism , POU Domain Factors/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism
6.
Nature ; 476(7359): 220-3, 2011 May 26.
Article in English | MEDLINE | ID: mdl-21617644

ABSTRACT

Somatic cell nuclear transfer, cell fusion, or expression of lineage-specific factors have been shown to induce cell-fate changes in diverse somatic cell types. We recently observed that forced expression of a combination of three transcription factors, Brn2 (also known as Pou3f2), Ascl1 and Myt1l, can efficiently convert mouse fibroblasts into functional induced neuronal (iN) cells. Here we show that the same three factors can generate functional neurons from human pluripotent stem cells as early as 6 days after transgene activation. When combined with the basic helix-loop-helix transcription factor NeuroD1, these factors could also convert fetal and postnatal human fibroblasts into iN cells showing typical neuronal morphologies and expressing multiple neuronal markers, even after downregulation of the exogenous transcription factors. Importantly, the vast majority of human iN cells were able to generate action potentials and many matured to receive synaptic contacts when co-cultured with primary mouse cortical neurons. Our data demonstrate that non-neural human somatic cells, as well as pluripotent stem cells, can be converted directly into neurons by lineage-determining transcription factors. These methods may facilitate robust generation of patient-specific human neurons for in vitro disease modelling or future applications in regenerative medicine.


Subject(s)
Cell Differentiation , Cellular Reprogramming , Neurons/cytology , Neurons/metabolism , Transcription Factors/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line , Cells, Cultured , Cellular Reprogramming/genetics , Cellular Reprogramming/physiology , Cerebral Cortex/cytology , Coculture Techniques , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Electric Conductivity , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Membrane Potentials , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , POU Domain Factors/genetics , POU Domain Factors/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Regenerative Medicine , Synapses/metabolism , Transcription Factors/genetics , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL