Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Genom ; 10(5)2024 May.
Article in English | MEDLINE | ID: mdl-38785221

ABSTRACT

Wastewater-based surveillance (WBS) is an important epidemiological and public health tool for tracking pathogens across the scale of a building, neighbourhood, city, or region. WBS gained widespread adoption globally during the SARS-CoV-2 pandemic for estimating community infection levels by qPCR. Sequencing pathogen genes or genomes from wastewater adds information about pathogen genetic diversity, which can be used to identify viral lineages (including variants of concern) that are circulating in a local population. Capturing the genetic diversity by WBS sequencing is not trivial, as wastewater samples often contain a diverse mixture of viral lineages with real mutations and sequencing errors, which must be deconvoluted computationally from short sequencing reads. In this study we assess nine different computational tools that have recently been developed to address this challenge. We simulated 100 wastewater sequence samples consisting of SARS-CoV-2 BA.1, BA.2, and Delta lineages, in various mixtures, as well as a Delta-Omicron recombinant and a synthetic 'novel' lineage. Most tools performed well in identifying the true lineages present and estimating their relative abundances and were generally robust to variation in sequencing depth and read length. While many tools identified lineages present down to 1 % frequency, results were more reliable above a 5 % threshold. The presence of an unknown synthetic lineage, which represents an unclassified SARS-CoV-2 lineage, increases the error in relative abundance estimates of other lineages, but the magnitude of this effect was small for most tools. The tools also varied in how they labelled novel synthetic lineages and recombinants. While our simulated dataset represents just one of many possible use cases for these methods, we hope it helps users understand potential sources of error or bias in wastewater sequencing analysis and to appreciate the commonalities and differences across methods.


Subject(s)
COVID-19 , Genome, Viral , SARS-CoV-2 , Wastewater , Wastewater/virology , SARS-CoV-2/genetics , SARS-CoV-2/classification , COVID-19/virology , COVID-19/epidemiology , Humans , Computational Biology/methods , Genomics/methods , Wastewater-Based Epidemiological Monitoring , Phylogeny
3.
JHEP Rep ; 5(7): 100701, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37305441

ABSTRACT

Background & Aims: Ongoing transmission of HCV infections is associated with risk factors such as drug injection, needlestick injuries, and men who have sex with men (MSM). Ways of transmission, the course of acute infection, changes of virologic features, and incidence over time are not well known. Methods: Over a period of 10 years, n = 161 patients with recently acquired HCV infection (RAHC) (median follow-up 6.8 years) were prospectively enrolled. NS5B sequencing was performed to re-evaluate the HCV genotype (GT) and for phylogenetic analyses. Results: Patients with RAHC were mainly male (92.5%), MSM (90.1%), and HIV-coinfected (86.3%). Transmission risk factors for MSM and non-MSM were sexual risk behaviour (100 and 6.3%, respectively), injection drug use (9.7 and 37.5%, respectively), and nasal drug use (15.2 and 0%, respectively). Spontaneous and interferon- or direct-acting antiviral-based clearance rates were 13.6, 84.3 and 93.4%, respectively. Mean RAHC declined from 19.8 in the first to 13.2 in the past five study years. Although the majority of infections was caused by HCV GT1a, the frequency of HCV GT4d and slightly HCV GT3a increased over time. No relevant clustering of HCV isolates was observed in non-MSM. However, 45% of HCV GT1a and 100% of HCV GT4d MSM cases clustered with MSM isolates from other countries. Travel-associated infections were supported by personal data in an MSM subgroup. No international clustering was detected in MSM with HCV GT1b or HCV GT3a. Conclusions: RAHCs were mainly diagnosed in HIV-coinfected MSM patients and were associated with sexual risk behaviour. Spontaneous clearance rates were low, and phylogenetic clusters were observed in the majority of patients. Impact and Implications: We evaluated the occurrence and transmission of recently acquired HCV infections (RAHCs) over a period of 10 years. Our data demonstrate that the presence of RAHC was mainly found in HIV-coinfected MSM, with internationally connected transmission networks being observed in the majority of patients. Spontaneous clearance rates were low, and reinfection rates increased mainly driven by a small subset of MSM patients with high-risk behaviour.

4.
Virus Evol ; 9(2): vead074, 2023.
Article in English | MEDLINE | ID: mdl-38162315

ABSTRACT

Virus evolution is strongly affected by antagonistic co-evolution of virus and host. Host immunity positively selects for viruses that evade the immune response, which in turn may drive counter-adaptations in host immune genes. We investigated how host immune pressure shapes virus populations, using the fruit fly Drosophila melanogaster and its natural pathogen Drosophila C virus (DCV), as a model. We performed an experimental evolution study in which DCV was serially passaged for ten generations in three fly genotypes differing in their antiviral RNAi response: wild-type flies and flies in which the endonuclease gene Dicer-2 was either overexpressed or inactivated. All evolved virus populations replicated more efficiently in vivo and were more virulent than the parental stock. The number of polymorphisms increased in all three host genotypes with passage number, which was most pronounced in Dicer-2 knockout flies. Mutational analysis showed strong parallel evolution, as mutations accumulated in a specific region of the VP3 capsid protein in every lineage in a host genotype-independent manner. The parental tyrosine at position ninety-five of VP3 was substituted with either one of five different amino acids in fourteen out of fifteen lineages. However, no consistent amino acid changes were observed in the viral RNAi suppressor gene 1A, nor elsewhere in the genome in any of the host backgrounds. Our study indicates that the RNAi response restricts the sequence space that can be explored by viral populations. Moreover, our study illustrates how evolution towards higher virulence can be a highly reproducible, yet unpredictable process.

5.
Nat Microbiol ; 7(8): 1151-1160, 2022 08.
Article in English | MEDLINE | ID: mdl-35851854

ABSTRACT

The continuing emergence of SARS-CoV-2 variants of concern and variants of interest emphasizes the need for early detection and epidemiological surveillance of novel variants. We used genomic sequencing of 122 wastewater samples from three locations in Switzerland to monitor the local spread of B.1.1.7 (Alpha), B.1.351 (Beta) and P.1 (Gamma) variants of SARS-CoV-2 at a population level. We devised a bioinformatics method named COJAC (Co-Occurrence adJusted Analysis and Calling) that uses read pairs carrying multiple variant-specific signature mutations as a robust indicator of low-frequency variants. Application of COJAC revealed that a local outbreak of the Alpha variant in two Swiss cities was observable in wastewater up to 13 d before being first reported in clinical samples. We further confirmed the ability of COJAC to detect emerging variants early for the Delta variant by analysing an additional 1,339 wastewater samples. While sequencing data of single wastewater samples provide limited precision for the quantification of relative prevalence of a variant, we show that replicate and close-meshed longitudinal sequencing allow for robust estimation not only of the local prevalence but also of the transmission fitness advantage of any variant. We conclude that genomic sequencing and our computational analysis can provide population-level estimates of prevalence and fitness of emerging variants from wastewater samples earlier and on the basis of substantially fewer samples than from clinical samples. Our framework is being routinely used in large national projects in Switzerland and the UK.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Genomics , Humans , SARS-CoV-2/genetics , Wastewater
6.
Epidemics ; 37: 100480, 2021 12.
Article in English | MEDLINE | ID: mdl-34488035

ABSTRACT

BACKGROUND: In December 2020, the United Kingdom (UK) reported a SARS-CoV-2 Variant of Concern (VoC) which is now named B.1.1.7. Based on initial data from the UK and later data from other countries, this variant was estimated to have a transmission fitness advantage of around 40-80 % (Volz et al., 2021; Leung et al., 2021; Davies et al., 2021). AIM: This study aims to estimate the transmission fitness advantage and the effective reproductive number of B.1.1.7 through time based on data from Switzerland. METHODS: We generated whole genome sequences from 11.8 % of all confirmed SARS-CoV-2 cases in Switzerland between 14 December 2020 and 11 March 2021. Based on these data, we determine the daily frequency of the B.1.1.7 variant and quantify the variant's transmission fitness advantage on a national and a regional scale. RESULTS: We estimate B.1.1.7 had a transmission fitness advantage of 43-52 % compared to the other variants circulating in Switzerland during the study period. Further, we estimate B.1.1.7 had a reproductive number above 1 from 01 January 2021 until the end of the study period, compared to below 1 for the other variants. Specifically, we estimate the reproductive number for B.1.1.7 was 1.24 [1.07-1.41] from 01 January until 17 January 2021 and 1.18 [1.06-1.30] from 18 January until 01 March 2021 based on the whole genome sequencing data. From 10 March to 16 March 2021, once B.1.1.7 was dominant, we estimate the reproductive number was 1.14 [1.00-1.26] based on all confirmed cases. For reference, Switzerland applied more non-pharmaceutical interventions to combat SARS-CoV-2 on 18 January 2021 and lifted some measures again on 01 March 2021. CONCLUSION: The observed increase in B.1.1.7 frequency in Switzerland during the study period is as expected based on observations in the UK. In absolute numbers, B.1.1.7 increased exponentially with an estimated doubling time of around 2-3.5 weeks. To monitor the ongoing spread of B.1.1.7, our plots are available online.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Switzerland/epidemiology , United Kingdom
7.
Curr Opin Virol ; 49: 157-163, 2021 08.
Article in English | MEDLINE | ID: mdl-34153841

ABSTRACT

The genetic diversity of virus populations within their hosts is known to influence disease progression, treatment outcome, drug resistance, cell tropism, and transmission risk, and the study of dynamic changes of genetic heterogeneity can provide insights into the evolution of viruses. Several measures to quantify within-host genetic diversity capturing different aspects of diversity patterns in a sample or population are used, based on incidence, relative frequencies, pairwise distances, or phylogenetic trees. Here, we review and compare several of these measures.


Subject(s)
Genetic Variation , Virus Diseases/virology , Viruses/genetics , Genome, Viral , Haplotypes , Humans , Mutation , Phylogeny , Quasispecies
8.
Epidemics ; 34: 100439, 2021 03.
Article in English | MEDLINE | ID: mdl-33556763

ABSTRACT

Epidemiological models are widely used to analyze the spread of diseases such as the global COVID-19 pandemic caused by SARS-CoV-2. However, all models are based on simplifying assumptions and often on sparse data. This limits the reliability of parameter estimates and predictions. In this manuscript, we demonstrate the relevance of these limitations and the pitfalls associated with the use of overly simplistic models. We considered the data for the early phase of the COVID-19 outbreak in Wuhan, China, as an example, and perform parameter estimation, uncertainty analysis and model selection for a range of established epidemiological models. Amongst others, we employ Markov chain Monte Carlo sampling, parameter and prediction profile calculation algorithms. Our results show that parameter estimates and predictions obtained for several established models on the basis of reported case numbers can be subject to substantial uncertainty. More importantly, estimates were often unrealistic and the confidence/credibility intervals did not cover plausible values of critical parameters obtained using different approaches. These findings suggest, amongst others, that standard compartmental models can be overly simplistic and that the reported case numbers provide often insufficient information for obtaining reliable and realistic parameter values, and for forecasting the evolution of epidemics.


Subject(s)
COVID-19/epidemiology , Models, Statistical , Pandemics , Algorithms , China/epidemiology , Forecasting , Humans , Markov Chains , Monte Carlo Method , Reproducibility of Results , Uncertainty
9.
PLoS Comput Biol ; 17(1): e1008646, 2021 01.
Article in English | MEDLINE | ID: mdl-33497393

ABSTRACT

Reproducibility and reusability of the results of data-based modeling studies are essential. Yet, there has been-so far-no broadly supported format for the specification of parameter estimation problems in systems biology. Here, we introduce PEtab, a format which facilitates the specification of parameter estimation problems using Systems Biology Markup Language (SBML) models and a set of tab-separated value files describing the observation model and experimental data as well as parameters to be estimated. We already implemented PEtab support into eight well-established model simulation and parameter estimation toolboxes with hundreds of users in total. We provide a Python library for validation and modification of a PEtab problem and currently 20 example parameter estimation problems based on recent studies.


Subject(s)
Programming Languages , Systems Biology/methods , Algorithms , Databases, Factual , Models, Biological , Models, Statistical , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...