Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Toxicol ; 91(10): 3373-3384, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28477265

ABSTRACT

Chronic methamphetamine (METH) abuse has been shown to elicit strong neurotoxic effects. Yet, with an increasing number of children born to METH abusing mothers maturing into adulthood, one important question is how far do the neurotoxic effects of METH alter various neurotransmitter systems in the adult METH-exposed offspring. The purpose of this study was to investigate long-term trans-generational neurochemical changes, following prenatal METH exposure, in the adult Wistar rat brain. METH or saline (SAL-control animals) was administered to pregnant dams throughout the entire gestation period (G0-G22). At postnatal day 90, dopamine, serotonin, glutamate and GABA were measured in the adult brain before (baseline) and after a METH re-administration using in vivo microdialysis and liquid chromatography/mass spectrometry. The results show that METH-exposure increased basal levels of monoamines and glutamate, but decreased GABA levels in all measured brain regions. Acute challenge with METH injection in the METH-exposed group induced a lower increase in the monoamine system relative to the increase in the GABAergic and glutamatergic system. The data show that prenatal METH exposure has strong effects on the monoaminergic, GABAergic and glutamatergic system even when exposure to METH was limited to the prenatal phase. Toxicological effects of METH have therefore longer lasting effects as currently considered and seem to affect the excitatory-inhibitory balance in the brain having strong implications for cognitive and behavioral functioning.


Subject(s)
Brain/drug effects , Brain/metabolism , Methamphetamine/toxicity , Prenatal Exposure Delayed Effects , Animals , Dopamine/metabolism , Female , Glutamic Acid/metabolism , Methamphetamine/administration & dosage , Methamphetamine/pharmacokinetics , Pregnancy , Rats, Wistar , Serotonin/metabolism , gamma-Aminobutyric Acid
2.
Neurochem Res ; 41(8): 1911-23, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27038442

ABSTRACT

Methamphetamine (MA) is the most commonly used psychostimulant drug, the chronic abuse of which leads to neurodegenerative changes in the brain. The global use of MA is increasing, including in pregnant women. Since MA can cross both placental and haematoencephalic barriers and is also present in maternal milk, children of chronically abused mothers are exposed prenatally as well as postnatally. Women seem to be more vulnerable to some aspects of MA abuse than men. MA is thought to exert its effects among others via direct interactions with dopamine transporters (DATs) in the brain tissue. Sexual dimorphism of the DAT system could be a base of sex-dependent actions of MA observed in behavioural and neurochemical studies. Possible sex differences in the DATs of preadolescent offspring exposed to MA prenatally and/or postnatally have not yet been evaluated. We examined the striatal synaptosomal DATs (the activity and density of surface expressed DATs and total DAT expression) in preadolescent male and female Wistar rats (31-35-day old animals) exposed prenatally and/or postnatally to MA (daily 5 mg/kg, s.c. to mothers during pregnancy and lactation). To distinguish between specific and nonspecific effects of MA on DATs, we also evaluated the in vitro effects of lipophilic MA on the fluidity of striatal membranes isolated from preadolescent and young adult rats of both sexes. We observed similar changes in the DATs of preadolescent rats exposed prenatally or postnatally (MA-mediated drop in the reserve pool but no alterations in surface-expressed DATs). However, prenatal exposure evoked significant changes in males and postnatal exposure in females. A significant decrease in the activity of surface-expressed DATs was found only in postnatally exposed females sensitized to MA via prenatal exposure. MA applied in vitro increased the fluidity of striatal membranes of preadolescent female but not male rats. In summary, DATs of preadolescent males are more sensitive to prenatal MA exposure via changes in the reserve pool and those of preadolescent females to postnatal MA exposure via the same mechanism. The combination of prenatal and postnatal MA exposure increases the risk of dopaminergic deficits via alterations in the activity of surface-expressed DATs especially in preadolescent females. MA-mediated changes in DATs of preadolescent females could be still enhanced via nonspecific disordering actions of MA on striatal membranes.


Subject(s)
Corpus Striatum/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine/metabolism , Methamphetamine/toxicity , Prenatal Exposure Delayed Effects/metabolism , Sex Characteristics , Animals , Animals, Newborn , Corpus Striatum/drug effects , Female , Male , Methamphetamine/administration & dosage , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL