Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Front Neurol ; 14: 1243301, 2023.
Article in English | MEDLINE | ID: mdl-37830095

ABSTRACT

Objective: To elucidate the functional role of gamma-aminobutyric acid (GABA)-ergic inhibition in suppressing epileptic brain activities such as spike-wave discharge (SWD), we recorded electroencephalogram (EEG) in knockout rats for Glutamate decarboxylase 1 (Gad1), which encodes one of the two GABA-synthesizing enzymes in mammals. We also examined how anti-epileptic drug valproate (VPA) acts on the SWDs present in Gad1 rats and affects GABA synthesis in the reticular thalamic nucleus (RTN), which is known to play an essential role in suppressing SWD. Methods: Chronic EEG recordings were performed in freely moving control rats and homozygous knockout Gad1 (-/-) rats. Buzzer tones (82 dB) were delivered to the rats during EEG monitoring to test whether acoustic stimulation could interrupt ongoing SWDs. VPA was administered orally to the rats, and the change in the number of SWDs was examined. The distribution of GABA in the RTN was examined immunohistochemically. Results: SWDs were abundant in EEG from Gad1 (-/-) rats as young as 2 months old. Although SWDs were universally detected in older rats irrespective of their Gad1 genotype, SWD symptom was most severe in Gad1 (-/-) rats. Acoustic stimulation readily interrupted ongoing SWDs irrespective of the Gad1 genotype, whereas SWDs were more resistant to interruption in Gad1 (-/-) rats. VPA treatment alleviated SWD symptoms in control rats, however, counterintuitively exacerbated the symptoms in Gad1 (-/-) rats. The immunohistochemistry results indicated that GABA immunoreactivity was significantly reduced in the somata of RTN neurons in Gad1 (-/-) rats but not in their axons targeting the thalamus. VPA treatment greatly increased GABA immunoreactivity in the RTN neurons of Gad1 (-/-) rats, which is likely due to the intact GAD2, another GAD isozyme, in these neurons. Discussion: Our results revealed two opposing roles of GABA in SWD generation: suppression and enhancement of SWD. To account for these contradictory roles, we propose a model in which GABA produced by GAD1 in the RTN neuronal somata is released extrasynaptically and mediates intra-RTN inhibition.

2.
Front Cell Neurosci ; 17: 1161608, 2023.
Article in English | MEDLINE | ID: mdl-37168420

ABSTRACT

Abnormalities in the γ-aminobutyric acid (GABA) system have been reported in the postmortem brains of individuals with schizophrenia. In particular, the reduction of one of the GABA-synthesizing enzymes, the 67-kDa isoform of glutamate decarboxylase (GAD67), has garnered interest among researchers because of its role in the formation of γ-oscillations and its potential involvement in the cognitive dysfunction observed in schizophrenia. Although several animal models have been generated to simulate the alterations observed in postmortem brain studies, they exhibit inconsistent behavioral phenotypes, leading to conflicting views regarding their contributions to the pathogenesis and manifestation of schizophrenia symptoms. For instance, GAD67 knockout rats (also known as Gad1 knockout rats) exhibit marked impairments in spatial working memory, but other model animals do not. In this review, we summarize the phenotypic attributes of these animal models and contemplate the potential for secondary modifications that may arise from the disruption of the GABAergic nervous system.

3.
Sci Rep ; 12(1): 6805, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35474103

ABSTRACT

Patients with glioma often demonstrate epilepsy. We previously found burst discharges in the peritumoral area in patients with malignant brain tumors during biopsy. Therefore, we hypothesized that the peritumoral area may possess an epileptic focus and that biological alterations in the peritumoral area may cause epileptic symptoms in patients with glioma. To test our hypothesis, we developed a rat model of glioma and characterized it at the cellular and molecular levels. We first labeled rat C6 glioma cells with tdTomato, a red fluorescent protein (C6-tdTomato), and implanted them into the somatosensory cortex of VGAT-Venus rats, which specifically expressed Venus, a yellow fluorescent protein in GABAergic neurons. We observed that the density of GABAergic neurons was significantly decreased in the peritumoral area of rats with glioma compared with the contralateral healthy side. By using a combination technique of laser capture microdissection and RNA sequencing (LCM-seq) of paraformaldehyde-fixed brain sections, we demonstrated that 19 genes were differentially expressed in the peritumoral area and that five of them were associated with epilepsy and neurodevelopmental disorders. In addition, the canonical pathways actively altered in the peritumoral area were predicted to cause a reduction in GABAergic neurons. These results suggest that biological alterations in the peritumoral area may be a cause of glioma-related epilepsy.


Subject(s)
Brain Neoplasms , Epilepsy , Glioma , Animals , Brain/metabolism , Brain Neoplasms/metabolism , Epilepsy/etiology , Gene Expression , Glioma/metabolism , Humans , Rats
4.
Psychiatry Clin Neurosci ; 76(7): 309-320, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35397141

ABSTRACT

AIMS: Schizophrenia (SZ) is characterized by psychotic symptoms and cognitive impairment, and is hypothesized to be a 'dysconnection' syndrome due to abnormal neural network formation. Although numerous studies have helped elucidate the pathophysiology of SZ, many aspects of the mechanism underlying psychotic symptoms remain unknown. This study used graph theory analysis to evaluate the characteristics of the resting-state network (RSN) in terms of microscale and macroscale indices, and to identify candidates as potential biomarkers of SZ. Specifically, we discriminated topological characteristics in the frequency domain and investigated them in the context of psychotic symptoms in patients with SZ. METHODS: We performed graph theory analysis of electrophysiological RSN data using magnetoencephalography to compare topological characteristics represented by microscale (degree centrality and clustering coefficient) and macroscale (global efficiency, local efficiency, and small-worldness) indices in 29 patients with SZ and 38 healthy controls. In addition, we investigated the aberrant topological characteristics of the RSN in patients with SZ and their relationship with SZ symptoms. RESULTS: SZ was associated with a decreased clustering coefficient, local efficiency, and small-worldness, especially in the high beta band. In addition, macroscale changes in the low beta band are closely associated with negative symptoms. CONCLUSIONS: The local networks of patients with SZ may disintegrate at both the microscale and macroscale levels, mainly in the beta band. Adopting an electrophysiological perspective of SZ as a failure to form local networks in the beta band will provide deeper insights into the pathophysiology of SZ as a 'dysconnection' syndrome.


Subject(s)
Magnetoencephalography , Schizophrenia , Brain , Humans
5.
FASEB J ; 36(2): e22123, 2022 02.
Article in English | MEDLINE | ID: mdl-34972242

ABSTRACT

GABA is a major neurotransmitter in the mammalian central nervous system. Glutamate decarboxylase (GAD) synthesizes GABA from glutamate, and two isoforms of GAD, GAD65, and GAD67, are separately encoded by the Gad2 and Gad1 genes, respectively. The phenotypes differ in severity between GAD single isoform-deficient mice and rats. For example, GAD67 deficiency causes cleft palate and/or omphalocele in mice but not in rats. In this study, to further investigate the functional roles of GAD65 and/or GAD67 and to determine the contribution of these isoforms to GABA synthesis during development, we generated various kinds of GAD isoform(s)-deficient rats and characterized their phenotypes. The age of death was different among Gad mutant rat genotypes. In particular, all Gad1-/- ; Gad2-/- rats died at postnatal day 0 and showed little alveolar space in their lungs, suggesting that the cause of their death was respiratory failure. All Gad1-/- ; Gad2-/- rats and 18% of Gad1-/- ; Gad2+/- rats showed cleft palate. In contrast, none of the Gad mutant rats including Gad1-/- ; Gad2-/- rats, showed omphalocele. These results suggest that both rat GAD65 and GAD67 are involved in palate formation, while neither isoform is critical for abdominal wall formation. The GABA content in Gad1-/- ; Gad2-/- rat forebrains and retinas at embryonic day 20 was extremely low, indicating that almost all GABA was synthesized from glutamate by GADs in the perinatal period. The present study shows that Gad mutant rats are a good model for further defining the role of GABA during development.


Subject(s)
Glutamate Decarboxylase/deficiency , Palate/embryology , Prosencephalon/embryology , Retina/embryology , Animals , Glutamate Decarboxylase/metabolism , Rats , Rats, Mutant Strains
6.
Front Pharmacol ; 12: 646088, 2021.
Article in English | MEDLINE | ID: mdl-33859565

ABSTRACT

Glutamate decarboxylase 67-kDa isoform (GAD67), which is encoded by the GAD1 gene, is one of the key enzymes that produce GABA. The reduced expression of GAD67 has been linked to the pathophysiology of schizophrenia. Additionally, the excitatory glutamatergic system plays an important role in the development of this disorder. Animal model studies have revealed that chronic blockade of NMDA-type glutamate receptors can cause GABAergic dysfunction and long-lasting behavioral abnormalities. Based on these findings, we speculated that Gad1 haplodeficiency combined with chronic NMDA receptor blockade would lead to larger behavioral consequences relevant to schizophrenia in a rat model. In this study, we administered an NMDAR antagonist, MK-801 (0.2 mg/kg), to CRISPR/Cas9-generated Gad1 +/- rats during adolescence to test this hypothesis. The MK-801 treated Gad1 +/- rats showed a shorter duration in each rearing episode in the open field test than the saline-treated Gad1 +/+ rats. In contrast, immobility in the forced swim test was increased and fear extinction was impaired in Gad1 +/- rats irrespective of MK-801 treatment. Interestingly, the time spent in the center region of the elevated plus-maze was significantly affected only in the saline-treated Gad1 +/- rats. Additionally, the MK-801-induced impairment of the social novelty preference was not observed in Gad1 +/- rats. These results suggest that the synergistic and additive effects of Gad1 haplodeficiency and NMDA receptor blockade during adolescence on the pathogenesis of schizophrenia may be more limited than expected. Findings from this study also imply that these two factors mainly affect negative or affective symptoms, rather than positive symptoms.

7.
Mol Brain ; 14(1): 5, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33413507

ABSTRACT

Reduced expression of glutamate decarboxylase 67 (GAD67), encoded by the Gad1 gene, is a consistent finding in postmortem brains of patients with several psychiatric disorders, including schizophrenia, bipolar disorder and major depressive disorder. The dysfunction of GAD67 in the brain is implicated in the pathophysiology of these psychiatric disorders; however, the neurobiological consequences of GAD67 dysfunction in mature brains are not fully understood because the homozygous Gad1 knockout is lethal in newborn mice. We hypothesized that the tetracycline-controlled gene expression/suppression system could be applied to develop global GAD67 knockdown mice that would survive into adulthood. In addition, GAD67 knockdown mice would provide new insights into the neurobiological impact of GAD67 dysfunction. Here, we developed Gad1tTA/STOP-tetO biallelic knock-in mice using Gad1STOP-tetO and Gad1tTA knock-in mice, and compared them with Gad1+/+ mice. The expression level of GAD67 protein in brains of Gad1tTA/STOP-tetO mice treated with doxycycline (Dox) was decreased by approximately 90%. The GABA content was also decreased in the brains of Dox-treated Gad1tTA/STOP-tetO mice. In the open-field test, Dox-treated Gad1tTA/STOP-tetO mice exhibited hyper-locomotor activity and decreased duration spent in the center region. In addition, acoustic startle responses were impaired in Dox-treated Gad1tTA/STOP-tetO mice. These results suggest that global reduction in GAD67 elicits emotional abnormalities in mice. These GAD67 knockdown mice will be useful for elucidating the neurobiological mechanisms of emotional abnormalities, such as anxiety symptoms associated with psychiatric disorders.


Subject(s)
Emotions , Gene Knockdown Techniques , Glutamate Decarboxylase/metabolism , Animals , Animals, Newborn , Behavior, Animal/drug effects , Doxycycline/pharmacology , Glutamic Acid/metabolism , Homozygote , Mice , gamma-Aminobutyric Acid/metabolism
8.
FEBS Open Bio ; 11(2): 340-353, 2021 02.
Article in English | MEDLINE | ID: mdl-33325157

ABSTRACT

The GABAergic system is thought to play an important role in the control of cognition and emotion, such as fear, and is related to the pathophysiology of psychiatric disorders. For example, the expression of the 67-kDa isoform of glutamate decarboxylase (GAD67), a GABA-producing enzyme, is downregulated in the postmortem brains of patients with major depressive disorder and schizophrenia. However, knocking out the Gad1 gene, which encodes GAD67, is lethal in mice, and thus, the association between Gad1 and cognitive/emotional functions is unclear. We recently developed Gad1 knockout rats and found that some of them can grow into adulthood. Here, we performed fear-conditioning tests in adult Gad1 knockout rats to assess the impact of the loss of Gad1 on fear-related behaviors and the formation of fear memory. In a protocol assessing both cued and contextual memory, Gad1 knockout rats showed a partial antiphase pattern of freezing during training and significantly excessive freezing during the contextual test compared with wild-type rats. However, Gad1 knockout rats did not show any synchronous increase in freezing with auditory tones in the cued test. On the other hand, in a contextual memory specialized protocol, Gad1 knockout rats exhibited comparable freezing behavior to wild-type rats, while their fear extinction was markedly impaired. These results suggest that GABA synthesis by GAD67 has differential roles in cued and contextual fear memory.


Subject(s)
Fear/physiology , Glutamate Decarboxylase/metabolism , Memory/physiology , gamma-Aminobutyric Acid/metabolism , Animals , Behavior Observation Techniques , Behavior, Animal/physiology , Gene Knockout Techniques , Glutamate Decarboxylase/genetics , Male , Models, Animal , Rats , Rats, Transgenic
9.
Int Psychogeriatr ; 33(1): 21-29, 2021 01.
Article in English | MEDLINE | ID: mdl-31578159

ABSTRACT

BACKGROUND: Diffusion tensor imaging (DTI), which is a technique for measuring the degree and direction of movement of water molecules in tissue, has been widely used to noninvasively assess white matter (WM) or gray matter (GM) microstructures in vivo. Mean diffusivity (MD), which is the average diffusion across all directions, has been considered as a marker of WM tract degeneration or extracellular space enlargement in GM. Recent lines of evidence suggest that cortical MD can better identify early-stage Alzheimer's disease than structural morphometric parameters in magnetic resonance imaging. However, knowledge of the relationships between cortical MD and other biological factors in the same cortical region, e.g. metabolites, is still limited. METHODS: Thirty-three healthy elderly individuals [aged 50-77 years (mean, 63.8±7.4 years); 11 males and 22 females] were enrolled. We estimated the associations between cortical MD and neurotransmitter levels. Specifically, we measured levels of γ-aminobutyric acid (GABA) and glutamate + glutamine (Glx), which are inhibitory and excitatory neurotransmitters, respectively, in medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) using MEGA-PRESS magnetic resonance spectroscopy, and we measured regional cortical MD using DTI. RESULTS: Cortical MD was significantly negatively associated with Glx levels in both mPFC and PCC. No significant association was observed between cortical MD and GABA levels in either GM region. CONCLUSION: Our findings suggest that degeneration of microstructural organization in GM, as determined on the basis of cortical MD measured by DTI, is accompanied by the decline of Glx metabolism within the same GM region.


Subject(s)
Glutamic Acid , Glutamine , Gray Matter , White Matter , Aged , Diffusion Tensor Imaging , Female , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , White Matter/diagnostic imaging
10.
Transl Psychiatry ; 10(1): 426, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33293518

ABSTRACT

GABAergic dysfunctions have been implicated in the pathogenesis of schizophrenia, especially the associated cognitive impairments. The GABA synthetic enzyme glutamate decarboxylase 67-kDa isoform (GAD67) encoded by the GAD1 gene is downregulated in the brains of patients with schizophrenia. Furthermore, a patient with schizophrenia harboring a homozygous mutation of GAD1 has recently been discovered. However, it remains unclear whether loss of function of GAD1 leads to the symptoms observed in schizophrenia, including cognitive impairment. One of the obstacles faced in experimental studies to address this issue is the perinatal lethality of Gad1 knockout (KO) mice, which precluded characterization at the adult stage. In the present study, we successfully generated Gad1 KO rats using CRISPR/Cas9 genome editing technology. Surprisingly, 33% of Gad1 KO rats survived to adulthood and could be subjected to further characterization. The GABA concentration in the Gad1 KO cerebrum was reduced to ~52% of the level in wild-type rats. Gad1 KO rats exhibited impairments in both spatial reference and working memory without affecting adult neurogenesis in the hippocampus. In addition, Gad1 KO rats showed a wide range of behavioral alterations, such as enhanced sensitivity to an NMDA receptor antagonist, hypoactivity in a novel environment, and decreased preference for social novelty. Taken together, the results suggest that Gad1 KO rats could provide a novel model covering not only cognitive deficits but also other aspects of the disorder. Furthermore, the present study teaches an important lesson: differences between species should be considered when developing animal models of human diseases.


Subject(s)
Schizophrenia , Adult , Animals , Brain/metabolism , CRISPR-Cas Systems , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Hippocampus/metabolism , Humans , Rats , Schizophrenia/genetics
11.
Front Psychiatry ; 11: 597, 2020.
Article in English | MEDLINE | ID: mdl-32670117

ABSTRACT

BACKGROUND: Bipolar disorder (BD) is a serious psychiatric disorder that is associated with a high suicide rate, and for which no clinical biomarker has yet been identified. To address this issue, we investigated the use of magnetoencephalography (MEG) as a new prospective tool. MEG has been used to evaluate frequency-specific connectivity between brain regions; however, no previous study has investigated the frequency-specific resting-state connectome in patients with BD. This resting-state MEG study explored the oscillatory representations of clinical symptoms of BD via graph analysis. METHODS: In this prospective case-control study, 17 patients with BD and 22 healthy controls (HCs) underwent resting-state MEG and evaluations for depressive and manic symptoms. After estimating the source current distribution, orthogonalized envelope correlations between multiple brain regions were evaluated for each frequency band. We separated regions-of-interest into seven left and right network modules, including the frontoparietal network (FPN), limbic network (LM), salience network (SAL), and default mode network (DMN), to compare the intra- and inter-community edges between the two groups. RESULTS: In the BD group, we found significantly increased inter-community edges of the right LM-right DMN at the gamma band, and decreased inter-community edges of the right SAL-right FPN at the delta band and the left SAL-right SAL at the theta band. Intra-community edges in the left LM at the high beta band were significantly higher in the BD group than in the HC group. The number of connections in the left LM at the high beta band showed positive correlations with the subjective and objective depressive symptoms in the BD group. CONCLUSION: We introduced graph theory into resting-state MEG studies to investigate the functional connectivity in patients with BD. To the best of our knowledge, this is a novel approach that may be beneficial in the diagnosis of BD. This study describes the spontaneous oscillatory brain networks that compensate for the time-domain issues associated with functional magnetic resonance imaging. These findings suggest that the connectivity of the LM at the beta band may be a good objective biological biomarker of the depressive symptoms associated with BD.

12.
Brain Behav Immun ; 87: 831-839, 2020 07.
Article in English | MEDLINE | ID: mdl-32217081

ABSTRACT

The prevalence of depression in later life is higher in women than in men. However, the sex difference in the pathophysiology of depression in elderly patients is not fully understood. Here, we performed gene expression profiling in leukocytes of middle-aged and elderly patients with major depressive disorder, termed later-life depression (LLD) in this context, and we characterized the sex-dependent pathophysiology of LLD. A microarray dataset obtained from leukocytes of patients (aged ≥50 years) with LLD (32 males and 39 females) and age-matched healthy individuals (20 males and 24 females) was used. Differentially expressed probes were determined by comparing the expression levels between patients and healthy individuals, and then functional annotation analyses (Ingenuity Pathway Analysis, Reactome pathway analysis, and cell-type enrichment analysis) were performed. A total of 1656 probes were differentially expressed in LLD females, but only 3 genes were differentially expressed in LLD males. The differentially expressed genes in LLD females were relevant to leukocyte extravasation signaling, Tec kinase signaling and the innate immune response. The upregulated genes were relevant to myeloid lineage cells such as CD14+ monocytes. In contrast, the downregulated genes were relevant to CD4+ and CD8+ T cells. Remarkable innate immune signatures are present in the leukocytes of LLD females but not males. Because inflammation is involved in the pathophysiology of depression, the altered inflammatory activity may be involved in the pathophysiology of LLD in women. In contrast, abnormal inflammation may be an uncommon feature in LLD males.


Subject(s)
Depressive Disorder, Major , Aged , CD8-Positive T-Lymphocytes , Depressive Disorder, Major/genetics , Female , Gene Expression Profiling , Humans , Immunity, Innate , Male , Microarray Analysis , Middle Aged
13.
Front Behav Neurosci ; 13: 131, 2019.
Article in English | MEDLINE | ID: mdl-31275123

ABSTRACT

Major depressive disorder (MDD) is a highly prevalent psychiatric disorder worldwide. Several lines of evidence suggest that the dysfunction of somatostatin (SOM) neurons is associated with the pathophysiology of MDD. Importantly, most SOM neurons are γ-aminobutyric acid (GABA) interneurons. However, whether the dysfunction of GABAergic neurotransmission from SOM neurons contributes to the pathophysiology of MDD remains elusive. To address this issue, we investigated the emotional behaviors and relevant molecular mechanism in mice lacking glutamate decarboxylase 67 (GAD67), an isoform of GABA-synthesizing enzyme, specifically in SOM neurons (SOM-GAD67 mice). The SOM-GAD67 mice exhibited anxiety-like behavior in the open-field test without an effect on locomotor activity. The SOM-GAD67 mice showed depression-like behavior in neither the forced swimming test nor the sucrose preference test. In addition, the ability to form contextual fear memory was normal in the SOM-GAD67 mice. Furthermore, the plasma corticosterone level was normal in the SOM-GAD67 mice both under baseline and stress conditions. The expression ratios of p-AktSer473/Akt and p-GSK3ßSer9/GSK3ß were decreased in the frontal cortex of SOM-GAD67 mice. Taken together, these data suggest that the loss of GAD67 from SOM neurons may lead to the development of anxiety-like but not depression-like states mediated by modification of Akt/GSK3ß activities.

14.
Brain Nerve ; 70(7): 841-848, 2018 Jul.
Article in Japanese | MEDLINE | ID: mdl-29997280

ABSTRACT

FreeSurfer is open source software used to process and analyze magnetic resonance imaging of the human brain. It is a convenient tool that helps elucidate various structural characteristics the brain. In this review, we introduce the various structural indices of the brain, analyzed using FreeSurfer and magnetoencephalography, which can evaluate neural activity with high temporal and spatial resolution. We consider that the FreeSurfer has great potential as a platform for multimodal neuroimaging studies.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Neuroimaging , Software , Humans , Magnetic Resonance Imaging , Magnetoencephalography
15.
Int Psychogeriatr ; 30(9): 1385-1391, 2018 09.
Article in English | MEDLINE | ID: mdl-29559018

ABSTRACT

ABSTRACTBackground:Although recent studies have suggested that the γ-aminobutyric acid type A (GABAA) receptor binding affinity can be a more sensitive marker of age-related neuronal loss than regional gray matter (GM) volume, knowledge about the relationship between decreased GABAA receptor binding affinity and cognitive decline during normal aging is still limited. METHODS: Thirty-seven healthy elderly individuals (aged 50-77 years (mean, 64.5 ± 7.3 years); 15 males and 22 females) were enrolled in this study. We investigated the association of the performance of the healthy elderly in the attentional function test with regional GM volume, regional cerebral bold flow (rCBF), and GABAA receptor binding affinity in the resting state by structural magnetic resonance imaging (MRI), arterial spin labeling (ASL), and 123I-iomazenil (IMZ) SPECT, with the analysis focusing on the bilateral inferior frontal gyri. RESULTS: The score of the rapid visual information processing (RVP) test, which is used to assess visual sustained attention, showed a positive correlation with GABAA receptor binding affinity in the right inferior frontal gyrus. No significant correlation was found between RVP test score and regional GM volume or rCBF. CONCLUSION: The findings of 123I-IMZ SPECT, but not those of structural MRI or ASL, suggest that a decreased GABAA receptor binding affinity can be a sensitive marker of cognitive impairment.


Subject(s)
Attention , Brain Mapping/methods , Prefrontal Cortex/diagnostic imaging , Receptors, GABA-A/analysis , Aged , Cerebrovascular Circulation , Female , Healthy Volunteers , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Prefrontal Cortex/physiology , Rest , Spin Labels , Tomography, Emission-Computed, Single-Photon
16.
Behav Neurol ; 2017: 2824615, 2017.
Article in English | MEDLINE | ID: mdl-29430081

ABSTRACT

The scale-free dynamics of human brain activity, characterized by an elaborate temporal structure with scale-free properties, can be quantified using the power-law exponent (PLE) as an index. Power laws are well documented in nature in general, particularly in the brain. Some previous fMRI studies have demonstrated a lower PLE during cognitive-task-evoked activity than during resting state activity. However, PLE modulation during cognitive-task-evoked activity and its relationship with an associated behavior remain unclear. In this functional fMRI study in the resting state and face processing + control task, we investigated PLE during both the resting state and task-evoked activities, as well as its relationship with behavior measured using mean reaction time (mRT) during the task. We found that (1) face discrimination-induced BOLD signal changes in the medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), amygdala, and fusiform face area; (2) PLE significantly decreased during task-evoked activity specifically in mPFC compared with resting state activity; (3) most importantly, in mPFC, mRT significantly negatively correlated with both resting state PLE and the resting-task PLE difference. These results may lead to a better understanding of the associations between task performance parameters (e.g., mRT) and the scale-free dynamics of spontaneous and task-evoked brain activities.


Subject(s)
Amygdala/physiology , Brain Mapping/methods , Facial Recognition/physiology , Gyrus Cinguli/physiology , Prefrontal Cortex/physiology , Reaction Time/physiology , Temporal Lobe/physiology , Adult , Amygdala/diagnostic imaging , Gyrus Cinguli/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Prefrontal Cortex/diagnostic imaging , Temporal Lobe/diagnostic imaging , Young Adult
17.
Neuroimage ; 128: 302-315, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26780573

ABSTRACT

Detailed studies on the association between neural oscillations and the neurotransmitters gamma-aminobutyric acid (GABA) and glutamate have been performed in vitro. In addition, recent functional magnetic resonance imaging studies have characterized these neurotransmitters in task-induced deactivation processes during a working memory (WM) task. However, few studies have investigated the relationship between these neurotransmitters and task-induced oscillatory changes in the human brain. Here, using combined magnetoencephalography (MEG) and magnetic resonance spectroscopy (MRS), we investigated the modulation of GABA and glutamate + glutamine (Glx) concentrations related to task-induced oscillations in neural activity during a WM task. We first acquired resting-state MRS and MEG data from 20 healthy male volunteers using the n-back task. Time-frequency analysis was employed to determine the power induced during the encoding and retention phases in perigenual anterior cingulate cortex (pg-ACC), mid-ACC, and occipital cortex (OC). Statistical analysis showed that increased WM load was associated with task-induced oscillatory modulations (TIOMs) of the theta-gamma band relative to the zero-back condition (TIOM0B) in each volume of interest during the encoding phase of the n-back task. The task-induced oscillatory modulations in the two-back condition relative to the zero-back condition (TIOM2B-0B) were negatively correlated with the percent rate change of the correct hit rate for 2B-0B, but positively correlated with GABA/Glx. The positive correlation between TIOM2B-0B and GABA/Glx during the WM task indicates the importance of the inhibition/excitation ratio. In particular, a low inhibition/excitation ratio is essential for the efficient inhibition of irrelevant neural activity, thus producing precise task performance.


Subject(s)
Brain/physiology , Glutamic Acid/metabolism , Glutamine/metabolism , Memory, Short-Term/physiology , gamma-Aminobutyric Acid/metabolism , Adolescent , Adult , Glutamic Acid/analysis , Glutamine/analysis , Humans , Magnetic Resonance Spectroscopy , Magnetoencephalography , Male , Young Adult , gamma-Aminobutyric Acid/analysis
18.
Neuropsychopharmacology ; 40(10): 2475-86, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25904362

ABSTRACT

Decreased expression of the GABA synthetic enzyme glutamate decarboxylase 67 (GAD67) in a subset of GABAergic neurons, including parvalbumin (PV)-expressing neurons, has been observed in postmortem brain studies of schizophrenics and in animal models of schizophrenia. However, it is unclear whether and how the perturbations of GAD67-mediated GABA synthesis and signaling contribute to the pathogenesis of schizophrenia. To address this issue, we generated the mice lacking GAD67 primarily in PV neurons and characterized them with focus on schizophrenia-related parameters. We found that heterozygous mutant mice exhibited schizophrenia-related behavioral abnormalities such as deficits in prepulse inhibition, MK-801 sensitivity, and social memory. Furthermore, we observed reduced inhibitory synaptic transmission, altered properties of NMDA receptor-mediated synaptic responses in pyramidal neurons, and increased spine density in hippocampal CA1 apical dendrites, suggesting a possible link between GAD67 deficiency and disturbed glutamatergic excitatory synaptic functions in schizophrenia. Thus, our results indicate that the mice heterozygous for GAD67 deficiency primarily in PV neurons share several neurochemical and behavioral abnormalities with schizophrenia, offering a novel tool for addressing the underlying pathophysiology of schizophrenia.


Subject(s)
GABAergic Neurons/pathology , Glutamate Decarboxylase/deficiency , Hippocampus/pathology , Schizophrenia/genetics , Schizophrenia/pathology , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Actins/metabolism , Action Potentials/drug effects , Action Potentials/genetics , Animals , Dendrites/metabolism , Disease Models, Animal , Excitatory Amino Acid Antagonists/pharmacology , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , GABAergic Neurons/metabolism , Glutamate Decarboxylase/genetics , Hippocampus/cytology , Male , Maze Learning/drug effects , Mice , Mice, Transgenic , Parvalbumins/genetics , Phenotype , Reflex, Startle/drug effects , Reflex, Startle/genetics , Somatostatin/metabolism , Valine/analogs & derivatives , Valine/pharmacology
19.
Article in English | MEDLINE | ID: mdl-25691859

ABSTRACT

Cortical interneurons are classified into several subtypes that contribute to cortical oscillatory activity. Parvalbumin (PV)-expressing cells, a type of inhibitory interneuron, are involved in the gamma oscillations of local field potentials (LFPs). Under ketamine-xylazine anesthesia or sleep, mammalian cortical circuits exhibit slow oscillations in which the active-up state and silent-down state alternate at ~1 Hz. The up state is composed of various high-frequency oscillations, including gamma oscillations. However, it is unclear how PV cells and somatostatin (SOM) cells contribute to the slow oscillations and the high-frequency oscillations nested in the up state. To address these questions, we used mice lacking glutamate decarboxylase 67, primarily in PV cells (PV-GAD67 mice) or in SOM cells (SOM-GAD67 mice). We then compared LFPs between PV-GAD67 mice and SOM-GAD67 mice. PV cells target the proximal regions of pyramidal cells, whereas SOM cells are dendrite-preferring interneurons. We found that the up state was shortened in duration in the PV-GAD67 mice, but tended to be longer in SOM-GAD67 mice. Firing rate tended to increase in PV-GAD67 mice, but tended to decrease in SOM-GAD67 mice. We also found that delta oscillations tended to increase in SOM-GAD67 mice, but tended to decrease in PV-GAD67 mice. Current source density and wavelet analyses were performed to determine the depth profiles of various high-frequency oscillations. High gamma and ripple (60-200 Hz) power decreased in the neocortical upper layers specifically in PV-GAD67 mice, but not in SOM-GAD67. In addition, beta power (15-30 Hz) increased in the deep layers, specifically in PV-GAD67 mice. These results suggest that PV cells play important roles in persistence of the up state and in the balance between gamma and beta bands across cortical layers, whereas SOM and PV cells may make an asymmetric contribution to regulate up-state and delta oscillations.


Subject(s)
GABAergic Neurons/physiology , Interneurons/physiology , Neocortex/physiology , Animals , Electrophysiology , GABAergic Neurons/cytology , Interneurons/cytology , Mice , Mice, Knockout , Neocortex/cytology , Parvalbumins/metabolism , Somatostatin/metabolism
20.
Neuroimage ; 109: 102-8, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25583607

ABSTRACT

The anterior cingulate cortex (ACC), consisting of the perigenual ACC (pgACC) and mid-ACC (i.e., affective and cognitive areas, respectively), plays a significant role in the performance of gambling tasks, which are used to measure decision-making behavior under conditions of risk. Although recent neuroimaging studies have suggested that the γ-aminobutyric acid (GABA) concentration in the pgACC is associated with decision-making behavior, knowledge regarding the relationship of GABA concentrations in subdivisions of the ACC with gambling task performance is still limited. The aim of our magnetic resonance spectroscopy study is to investigate in 20 healthy males the relationship of concentrations of GABA and glutamate+glutamine (Glx) in the pgACC, mid-ACC, and occipital cortex (OC) with multiple indexes of decision-making behavior under conditions of risk, using the Cambridge Gambling Task (CGT). The GABA/creatine (Cr) ratio in the pgACC negatively correlated with delay aversion score, which corresponds to the impulsivity index. The Glx/Cr ratio in the pgACC negatively correlated with risk adjustment score, which is reported to reflect the ability to change the amount of the bet depending on the probability of winning or losing. The scores of CGT did not significantly correlate with the GABA/Cr or Glx/Cr ratio in the mid-ACC or OC. Results of this study suggest that in the pgACC, but not in the mid-ACC or OC, GABA and Glx concentrations play a distinct role in regulating impulsiveness and risk probability during decision-making behavior under conditions of risk, respectively.


Subject(s)
Decision Making/physiology , Glutamates/metabolism , Glutamine/metabolism , Gyrus Cinguli/metabolism , gamma-Aminobutyric Acid/metabolism , Adolescent , Adult , Humans , Impulsive Behavior/physiology , Magnetic Resonance Spectroscopy , Male , Neuropsychological Tests , Risk , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...