Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(1): e23595, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38187240

ABSTRACT

Objectives: This study aims to examine whether the parenterally administered mRNA-based COVID-19 vaccines can induce sufficient mucosal-type IgA responses to prevent SARS-CoV-2 transmission. Methods: We examined the longitudinal kinetics of SARS-CoV-2 spike RBD-specific IgA and IgG responses in sera of Japanese healthcare workers (HCWs) after receiving two doses and the third dose of BNT162b2 mRNA vaccines. During the prospective cohort study, Omicron breakthrough infections occurred in 62 participants among 370 HCWs who had received triple doses of the vaccine. Pre-breakthrough sera of infected HCWs and non-infected HCWs were examined for the levels of anti-RBD IgA and IgG titers. Results: The seropositivity of anti-RBD IgA at 1 M after the second vaccine (2D-1M) and after the third dose (3D-1M) was 65.4% and 87.4%, respectively, and wanes quickly. The boosting effect on anti-RBD Ab titers following breakthrough infections was more notable for anti-RBD IgA than for IgG. There were partial cause-relationships between the lower anti-RBD IgA or IgG at pre-breakthrough sera and the breakthrough infection. Conclusions: Parenterally administered COVID-19 vaccines do not generate sufficient mucosal-type IgA responses despite strong systemic IgG responses to SARS-CoV-2. These results demonstrate the necessity and importance of reevaluating vaccine design and scheduling to efficiently increase oral or respiratory mucosal immunity against SARS-CoV-2.

2.
Commun Biol ; 5(1): 94, 2022 01 25.
Article in English | MEDLINE | ID: mdl-35079103

ABSTRACT

Although respiratory syncytial virus (RSV) is a major cause of respiratory tract infection in children, no effective therapies are available. Recently, RSV G, the attachment glycoprotein, has become a major focus in the development of therapeutic strategies against RSV infection. Treatment of RSV-infected cultured cells with maoto, a traditional herbal medicine for acute febrile diseases, significantly reduced the viral RNA and titers. RSV attachment to the cell surface was inhibited both in the presence of maoto and when RSV particles were pre-treated with maoto. We demonstrated that maoto components, Ephedrae Herba (EH) and Cinnamomi Cortex (CC), specifically interacted with the central conserved domain (CCD) of G protein, and also found that this interaction blocked viral attachment to the cellular receptor CX3CR1. Genetic mutation of CX3C motif on the CCD, the epitope for CX3CR1, decreased the binding capacity to EH and CC, suggesting that CX3C motif was the target for EH and CC. Finally, oral administration of maoto for five days to RSV-infected mice significantly reduced the lung viral titers. These experiments clearly showed the anti-RSV activity of EH and CC mixed in maoto. Taken together, this study provides insights for the rational design of therapies against RSV infection.


Subject(s)
Antiviral Agents/therapeutic use , Drugs, Chinese Herbal/pharmacology , Respiratory Syncytial Virus Infections/drug therapy , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cinnamomum zeylanicum , Drugs, Chinese Herbal/chemistry , Mice , Models, Molecular , Protein Conformation , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses , Viral Fusion Proteins , Viral Load , Virus Attachment
3.
Anticancer Res ; 39(8): 4495-4502, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31366551

ABSTRACT

BACKGROUND/AIM: In mice, fetal liver is the first tissue of definitive erythropoiesis for definitive erythroid expansion and maturation. ZFAT, originally identified as a candidate susceptibility gene for autoimmune thyroid disease, has been reported to be involved in primitive hematopoiesis and T cell development. The aim of this study was to examine whether or not Zfat is involved in definitive erythropoiesis in the fetal liver during mammalian development. MATERIALS AND METHODS: The role of Zfat during mouse fetal erythropoiesis in the fetal liver was examined using tamoxifen-inducible CreERT2 Zfat-deficient mice. RESULTS: Zfat-deficient mice exhibit moderate anemia with small and pale fetal liver through a decreased number of erythroblasts by E12.5. Apoptosis sensitivity in fetal liver erythroid progenitors was enhanced by Zfat-deficiency ex vivo. Moreover, Zfat knockdown partially inhibited CD71-/lowTer119- to CD71highTer119- transition of fetal liver erythroid progenitors with impairment in the elevation of CD71 expression. CONCLUSION: Zfat plays a critical role for erythropoiesis in the fetal liver.


Subject(s)
Antigens, CD/genetics , Erythropoiesis/genetics , Liver/growth & development , Receptors, Transferrin/genetics , Transcription Factors/genetics , Animals , Apoptosis/genetics , Cell Differentiation/genetics , Erythroid Cells/metabolism , Erythroid Cells/pathology , Fetal Development/genetics , Fetus , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Humans , Liver/metabolism , Mice , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Thyroiditis, Autoimmune/genetics , Thyroiditis, Autoimmune/pathology
4.
Cell Microbiol ; 21(1): e12962, 2019 01.
Article in English | MEDLINE | ID: mdl-30311994

ABSTRACT

Chlamydia trachomatis is an obligate intracellular bacterium that scavenges host metabolic products for its replication. Mitochondria are the power plants of eukaryotic cells and provide most of the cellular ATP via oxidative phosphorylation. Several intracellular pathogens target mitochondria as part of their obligatory cellular reprogramming. This study was designed to analyse the mitochondrial morphological changes in response to C. trachomatis infection in HeLa cells. Mitochondrial elongation and fragmentation were found at the early stages and late stages of C. trachomatis infection, respectively. C. trachomatis infection-induced mitochondrial elongation was associated with the increase of mitochondrial respiratory activity, ATP production, and intracellular growth of C. trachomatis. Silencing mitochondrial fusion mediator proteins abrogated the C. trachomatis infection-induced elevation in the oxygen consumption rate and attenuated chlamydial proliferation. Mechanistically, C. trachomatis induced the elevation of intracellular cAMP at the early phase of infection, followed by the phosphorylation of fission-inactive serine residue 637 (S637) of Drp1, resulting in mitochondrial elongation. Accordingly, treatment with adenylate cyclase inhibitor diminished mitochondrial elongation and bacterial growth in infected cells. Collectively, these results strongly indicate that C. trachomatis promotes its intracellular growth by targeting mitochondrial dynamics to regulate ATP synthesis via inhibition of the fission mediator Drp1.


Subject(s)
Chlamydia Infections/pathology , Chlamydia trachomatis/growth & development , Epithelial Cells/microbiology , Host-Pathogen Interactions , Microbial Viability , Mitochondria/pathology , Mitochondrial Dynamics , Adenosine Triphosphate/metabolism , HeLa Cells , Humans , Mitochondria/metabolism , Models, Theoretical
5.
Front Pharmacol ; 8: 850, 2017.
Article in English | MEDLINE | ID: mdl-29209220

ABSTRACT

Hachimijiogan (HJG) is a traditional herbal medicine that improves anxiety disorders in patients with dementia. In this study, we tested the hypothesis that HJG exerts neurotrophic factor-like effects to ameliorate memory impairment in Alzheimer disease (AD) model rats. First, we describe that HJG acts to induce neurite outgrowth in PC12 cells (a rat pheochromocytoma cell line) like nerve growth factor (NGF) in a concentration-dependent manner (3 µg/ml HJG, p < 0.05; 10-500 µg/ml HJG, p < 0.001). While six herbal constituents of HJG, Rehmannia root, Dioscorea rhizome, Rhizoma Alismatis, Poria sclerotium, Moutan bark, and Cinnamon bark, could induce neurite outgrowth effects, the effect was strongest with HJG (500 µg/ml). Second, we demonstrated that HJG-induced neurite outgrowth was blocked by an inhibitor of cAMP response element binding protein (CREB), KG-501 (10 µM, p < 0.001). Moreover, HJG was observed to induce CREB phosphorylation 20-90 min after treatment (20 min, 2.50 ± 0.58-fold) and CRE-mediated transcription in cultured PC12 cells (500 µg/ml, p < 0.01; 1000 µg/ml, p < 0.001). These results suggest a CREB-dependent mechanism underlies the neurotrophic effects of HJG. Finally, we examined improvements of memory impairment following HJG treatment using a Morris water maze in AD model animals (CI + Aß rats). Repeated oral administration of HJG improved memory impairment (300 mg/kg, p < 0.05; 1000 mg/kg, p < 0.001) and induced CREB phosphorylation within the hippocampus (1000 mg/kg, p < 0.01). Together, our results suggest that HJG possesses neurotrophic effects similar to those of NGF, and can ameliorate cognitive dysfunction in a rat dementia model via CREB activation. Thus, HJG could potentially be a substitute for neurotrophic factors as a treatment for dementia.

6.
Biochem Biophys Res Commun ; 403(2): 220-4, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-21073862

ABSTRACT

Exposure of cells to oxygen radicals damage various biologically important molecules. Among the oxidized bases produced in nucleic acids, 8-oxo-7,8-dihydroguanine (8-oxoguanine) is particularly important since it causes base mispairing. To ensure accurate gene expression, organisms must have a mechanism to discriminate 8-oxoguanine-containing RNA from normal transcripts. We searched for proteins that specifically bind to 8-oxoguanine-containing RNA from human HeLa cell extracts, and the candidate proteins were identified using mass spectrometry. Among the identified candidates, splicing isoform 1 of heterogeneous nuclear ribonucleoprotein D0 (HNRNPD) and splicing isoform C1 of heterogeneous nuclear ribonucleoprotein C1/C2 (HNRNPC) exhibited strong abilities to bind to oxidized RNA. The amount of HNRNPD protein rapidly decreased when cells were exposed to hydrogen peroxide, an agent that enhances oxidative stress. Moreover, the suppression of HNRNPD expression by siRNA caused cells to exhibit an increased sensitivity to hydrogen peroxide. The application of siRNA against HNRNPC also caused an increase in sensitivity to hydrogen peroxide. Since no additive effect was observed with a combined addition of siRNAs for HNRNPD and HNRNPC, we concluded that the two proteins may function in the same mechanism for the accurate gene expression.


Subject(s)
Guanine/analogs & derivatives , Heterogeneous-Nuclear Ribonucleoprotein D/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism , Oxidative Stress , RNA/metabolism , Guanine/analysis , Guanine/metabolism , HeLa Cells , Heterogeneous Nuclear Ribonucleoprotein D0 , Heterogeneous-Nuclear Ribonucleoprotein D/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group C/genetics , Humans , RNA/chemistry , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...