Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Parasit Vectors ; 8: 272, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25966847

ABSTRACT

BACKGROUND: Dengue is a prevalent arboviral disease and the development of insecticide resistance among its vectors impedes endeavors to control it. Coffee is drunk by millions of people daily worldwide, which is associated with the discarding of large amounts of waste. Coffee and its waste contain large amounts of chemicals many of which are highly toxic and none of which have a history of resistance in mosquitoes. Once in solution, coffee is brownish in colour, resembling leaf infusion, which is highly attractive to gravid mosquitoes. To anticipate the environmental issues related to the increasing popularity of coffee as a drink, and also to combat insecticide resistance, we explored the deterrence potentials of coffee leachates against the ovipositing and embryonic stages of the dengue vector, Aedes albopictus. METHODS: In a series of choice, no-choice, and embryo toxicity bioassays, we examined changes in the ovipositional behaviours and larval eclosion of Ae. albopictus in response to coffee extracts at different concentrations. RESULTS: Oviposition responses were extremely low when ovicups holding highly concentrated extract (HCE) of coffee were the only oviposition sites. Gravid females retained increased numbers of mature eggs until 5 days post-blood feeding. When provided an opportunity to oviposit in cups containing coffee extracts and with water, egg deposition occurred at lower rates in those containing coffee, and HCE cups were far less attractive to females than those containing water only. Females that successfully developed in a coffee environment preferentially oviposited in such cups when in competition with preferred oviposition sites (water cups), but this trait did not continue into the fourth generation. Larval eclosion occurred at lower rates among eggs that matured in a coffee environment, especially among those that were maintained on HCE-moistened substrates. CONCLUSIONS: The observations of the present study indicate a pronounced vulnerability of Ae. albopictus to the presence of coffee in its habitats during the early phases of its life cycle. The observations that coffee repels gravid females and inhibits larval eclosion provide novel possibilities in the search for novel oviposition deterrents and anti-larval eclosion agents against dengue vectors.


Subject(s)
Aedes/physiology , Coffee , Dengue/prevention & control , Insect Vectors/physiology , Reproduction/drug effects , Aedes/drug effects , Animals , Biological Assay , Female , Insect Vectors/drug effects , Insecticide Resistance , Larva , Oviposition/drug effects
2.
Acta Trop ; 145: 68-78, 2015 May.
Article in English | MEDLINE | ID: mdl-25617636

ABSTRACT

Even with continuous vector control, dengue is still a growing threat to public health in Southeast Asia. Main causes comprise difficulties in identifying productive breeding sites and inappropriate targeted chemical interventions. In this region, rural families keep live birds in backyards and dengue mosquitoes have been reported in containers in the cages. To focus on this particular breeding site, we examined the capacity of bird fecal matter (BFM) from the spotted dove, to support Aedes albopictus larval growth. The impact of BFM larval uptake on some adult fitness traits influencing vectorial capacity was also investigated. In serial bioassays involving a high and low larval density (HD and LD), BFM and larval standard food (LSF) affected differently larval development. At HD, development was longer in the BFM environment. There were no appreciable mortality differences between the two treatments, which resulted in similar pupation and adult emergence successes. BFM treatment produced a better gender balance. There were comparable levels of blood uptake and egg production in BFM and LSF females at LD; that was not the case for the HD one, which resulted in bigger adults. BFM and LSF females displayed equivalent lifespans; in males, this parameter was shorter in those derived from the BFM/LD treatment. Taken together these results suggest that bird defecations successfully support the development of Ae. albopictus. Due to their cryptic aspects, containers used to supply water to encaged birds may not have been targeted by chemical interventions.


Subject(s)
Aedes/virology , Bird Diseases/epidemiology , Bird Diseases/transmission , Columbidae/virology , Dengue/epidemiology , Dengue/transmission , Feces/virology , Adult , Animals , Asia, Southeastern/epidemiology , Bird Diseases/virology , Dengue/virology , Disease Vectors , Female , Humans , Incidence , Larva/growth & development , Male , Prevalence , Rural Population
3.
BMC Biotechnol ; 14: 38, 2014 May 10.
Article in English | MEDLINE | ID: mdl-24884459

ABSTRACT

BACKGROUND: Lactobacillus species are used as bacterial vectors to deliver functional peptides to the intestine because they are delivered live to the intestine, colonize the mucosal surface, and continue to produce the desired protein. Previously, we generated a recombinant Lactobacillus casei secreting the cholera toxin B subunit (CTB), which can translocate into intestinal epithelial cells (IECs) through GM1 ganglioside. Recombinant fusion proteins of CTB with functional peptides have been used as carriers for the delivery of these peptides to IECs because of the high cell permeation capacity of recombinant CTB (rCTB). However, there have been no reports of rCTB fused with peptides expressed or secreted by Lactobacillus species. In this study, we constructed L. casei secreting a recombinant fusion protein of CTB with YVAD (rCTB-YVAD). YVAD is a tetrapeptide (tyrosine-valine-alanine-aspartic acid) that specifically inhibits caspase-1, which catalyzes the production of interleukin (IL)-1ß, an inflammatory cytokine, from its inactive precursor. Here, we examined whether rCTB-YVAD secreted by L. casei binds to GM1 ganglioside and inhibits caspase-1 activation in Caco-2 cells used as a model of IECs. RESULTS: We constructed the rCTB-YVAD secretion vector pSCTB-YVAD by modifying the rCTB secretion vector pSCTB. L. casei secreting rCTB-YVAD was generated by transformation with pSCTB-YVAD. Both the culture supernatant of pSCTB-YVAD-transformed L. casei and purified rCTB-YVAD bound to GM1 ganglioside, as did the culture supernatant of pSCTB-transformed L. casei and purified rCTB. Interestingly, although both purified rCTB-YVAD and rCTB translocated into Caco-2 cells, regardless of lipopolysaccharide (LPS), only purified rCTB-YVAD but not rCTB inhibited LPS-induced caspase-1 activation and subsequent IL-1ß secretion in Caco-2 cells, without affecting cell viability. CONCLUSIONS: The rCTB protein fused to a functional peptide secreted by L. casei can bind to GM1 ganglioside, like rCTB, and recombinant YVAD secreted by L. casei may exert anti-inflammatory effects in the intestine. Therefore, rCTB secreted by L. casei has potential utility as a vector for the delivery of YVAD to IECs.


Subject(s)
Caspase 1/metabolism , Cholera Toxin/metabolism , Interleukin-1beta/metabolism , Lacticaseibacillus casei/metabolism , Oligopeptides/metabolism , Amino Acid Sequence , Caco-2 Cells , Cell Survival/drug effects , Cholera Toxin/genetics , Cholera Toxin/pharmacology , Enzyme Activation/drug effects , Humans , Lipopolysaccharides/toxicity , Oligopeptides/chemistry , Oligopeptides/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology
4.
Acta Trop ; 130: 123-30, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24239749

ABSTRACT

Despite major insecticide-based vector control programs, dengue continues to be a major threat to public health in urban areas. The reasons for this failure include the emergence of insecticide resistance and the narrowing of the spectrum of efficient products. Cigarette butts (CBs), the most commonly discarded piece of waste, also represent a major health hazard to human and animal life. CBs are impregnated with thousands of chemical compounds, many of which are highly toxic and none of which has history of resistance in mosquitoes. This study was performed to examine whether exposure to CB alters various biological parameters of parents and their progeny. We examined whether the mosquito changes its ovipositional behaviors, egg hatching, reproductive capacity, longevity and fecundity in response to CB exposure at three different concentrations. Females tended to prefer microcosms containing CBs for egg deposition than those with water only. There were equivalent rates of eclosion success among larvae from eggs that matured in CB and water environments. We also observed decreased life span among adults that survived CB exposure. Extracts of CB waste have detrimental effects on the fecundity and longevity of its offspring, while being attractive to its gravid females. These results altogether indicate that CB waste indirectly affect key adult life traits of Aedes aegypti and could conceivably be developed as a novel dengue vector control strategy, referring to previously documented direct toxicity on the larval stage. But this will require further research on CB waste effects on non-target organisms including humans.


Subject(s)
Aedes/drug effects , Dengue/prevention & control , Insect Control/methods , Insecticides/toxicity , Tobacco Products/toxicity , Animals , Behavior, Animal , Female , Fertility/drug effects , Humans , Larva/drug effects , Longevity/drug effects , Male , Oviposition/drug effects
5.
PLoS One ; 8(12): e81642, 2013.
Article in English | MEDLINE | ID: mdl-24349104

ABSTRACT

BACKGROUND: Due to problems with chemical control, there is increasing interest in the use of microsporidia for control of lepidopteran pests. However, there have been few studies to evaluate the susceptibility of exotic species to microsporidia from indigenous Lepidoptera. METHODOLOGY/PRINCIPAL FINDINGS: We investigated some biological characteristics of the microsporidian parasite isolated from wild Plutella xylostella (PX) and evaluated its pathogenicity on the laboratory responses of sympatric invasive and resident noctuid moths. There were significant differences in spore size and morphology between PX and Spodoptera litura (SL) isolates. Spores of PX isolate were ovocylindrical, while those of SL were oval. PX spores were 1.05 times longer than those of SL, which in turn were 1.49 times wider than those of the PX. The timing of infection peaks was much shorter in SL and resulted in earlier larval death. There were no noticeable differences in amplicon size (two DNA fragments were each about 1200 base pairs in length). Phylogenetic analysis revealed that the small subunit (SSU) rRNA gene sequences of the two isolates shared a clade with Nosema/Vairimorpha sequences. The absence of octospores in infected spodopteran tissues suggested that PX and SL spores are closely related to Nosema plutellae and N. bombycis, respectively. Both SL and S. exigua (SE) exhibited susceptibility to the PX isolate infection, but showed different infection patterns. Tissular infection was more diverse in the former and resulted in much greater spore production and larval mortality. Microsporidium-infected larvae pupated among both infected and control larvae, but adult emergence occurred only in the second group. CONCLUSION/SIGNIFICANCE: The PX isolate infection prevented completion of development of most leafworm and beet armyworm larvae. The ability of the microsporidian isolate to severely infect and kill larvae of both native and introduced spodopterans makes it a valuable candidate for biocontrol against lepidopteran pests.


Subject(s)
DNA, Fungal/classification , Larva/microbiology , Microsporidia, Unclassified/pathogenicity , Moths/microbiology , Phylogeny , Spores, Fungal/pathogenicity , Animals , Biological Control Agents , DNA, Fungal/genetics , Host Specificity , Intestinal Mucosa/microbiology , Microsporidia, Unclassified/classification , Microsporidia, Unclassified/genetics , Nosema/classification , Nosema/genetics , Polymerase Chain Reaction , Sequence Analysis, DNA , Spores, Fungal/classification , Spores, Fungal/genetics
6.
Acta Trop ; 128(3): 584-90, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23999373

ABSTRACT

Annually, 4.5 trillion cigarette butts (CBs) are flicked into our environment. Evidence exists that CB waste is deadly to aquatic life, but their lethality to the aquatic life of the main dengue vector is unknown. CBs are full of toxicants that occur naturally, during planting and manufacturing, which may act as larvicidal agents. We assessed Aedes aegypti vulnerability to Marlboro butts during its development. Overall, CBs showed insecticidal activities against larvae. At early phases of development, mortality rates were much higher in two CBs solution (2CBSol) and 3CBSol microcosms (MICRs). Larval survival gradually decreased with development in 1CBSol-MICRs. However, in great presence of CBs, mortality was high even for the late developmental stages. These results suggest that A. aegypti larvae are vulnerable to CB presence in their habitats, but this effect was seen most during the early developmental phases and in the presence of increased amounts of cigarette remnants. CB filters are being used as raw material in many sectors, i.e., brick, art, fashion, plastic industries, as a practical solution to the pollution problem, the observed butt waste toxicity to mosquito larvae open new avenues for the identification of novel insecticide products.


Subject(s)
Aedes/drug effects , Insecticides/toxicity , Tobacco Products/toxicity , Animals , Biological Assay , Female , Humans , Larva/drug effects , Survival Analysis
7.
Parasit Vectors ; 6: 206, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23856274

ABSTRACT

BACKGROUND: Mating is a physiological process of crucial importance underlying the size and maintenance of mosquito populations. In sterile and incompatible insect technologies (SIT and IIT), mating is essential for mass production, persistence, and success of released individuals, and is a central parameter for judging the effectiveness of SIT/IIT programs. Some mosquitoes have an enormous reproductive potential for both themselves and pathogens and mating may contribute to persistence of infection in nature. As Aedes albopictus can transmit flaviviruses both sexually and horizontally, and as infected insects are usually derived from laboratory colonies, we investigated the implications of mating between a long-term laboratory colony of Ae. albopictus and wild populations. METHODS: Through a series of mating experiments, we examined the reproductive outcomes of sexual cross-affinity between laboratory-raised and wild adults of Ae. albopictus. RESULTS: The results indicated appreciable mating compatibility between laboratory-reared and wild adults, and equivalent levels of egg production among reciprocal crosses. We also observed comparable larval eclosion in lab females mated with wild males, and increased adult longevity in female offspring from wild females|×|laboratory males crosses. CONCLUSIONS: Taken together, these data suggest that Ae. albopictus can preserve its reproductive fitness over a long period of time in the laboratory environment and has valuable attributes for SIT application. These observations together with the ability to successfully inseminate heterospecific females indicate the potential of Ae. albopictus to act as an ecological barrier if non-sterilized males are massively released in areas occupied by Aedes aegypti. The observed substantial reproductive fitness combined with the capability to reproduce both, itself and viruses illustrates the potential of Ae. albopictus to pose a serious threat if infected and released accidentally.


Subject(s)
Aedes/physiology , Mosquito Control/methods , Animals , Breeding , Female , Male , Sexual Behavior, Animal
8.
Arch Virol ; 158(11): 2273-84, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23728735

ABSTRACT

In this study, we isolated and characterized an insect nidovirus from the mosquito Culex tritaeniorhynchus Giles (Diptera: Culicidae) in Vietnam, as an additional member of the new family Mesoniviridae in the order Nidovirales. The virus, designated "Dak Nong virus (DKNV)," shared many characteristics with Cavally virus and Nam Dinh virus, which have also been discovered recently in mosquitoes, and these viruses should be considered members of a single virus species, Alphamesonivirus 1. DKNV grew in cultured mosquito cells but could not replicate in the cultured vertebrate cells tested. N-terminal sequencing of the DKNV structural proteins revealed two posttranslational cleavage sites in the spike glycoprotein precursor. DKNV is assumed to be a new member of the species Alphamesonivirus 1, and the current study provides further understanding of viruses belonging to the new family Mesoniviridae.


Subject(s)
Culex/virology , Insect Viruses/classification , Insect Viruses/isolation & purification , Nidovirales/classification , Nidovirales/isolation & purification , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Chlorocebus aethiops , Cricetinae , Female , Insect Viruses/genetics , Insect Viruses/growth & development , Molecular Sequence Data , Nidovirales/genetics , Nidovirales/growth & development , Phylogeny , Sequence Analysis, DNA , Vero Cells , Vietnam , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
9.
Biol Pharm Bull ; 36(6): 952-8, 2013.
Article in English | MEDLINE | ID: mdl-23727916

ABSTRACT

Lactic acid bacteria (LAB) are used in various fields, including in food and medical supplies. There has been a great deal of research into vaccine development using LAB as carriers due to their "generally recognized as safe" status. Cholera is an infectious disease that causes diarrhea due to cholera toxin (CT) produced by Vibrio cholerae. The pentameric cholera toxin B (CTB) subunit has no toxicity, and is used as an antigen in cholera vaccines and as a delivery molecule in vaccines to various diseases. In this study, we generated recombinant LAB expressing and secreting CTB. Here, we first report that CTB expressed and secreted from LAB bound to GM1 ganglioside. The secreted CTB was purified, and its immunogenicity was determined by intranasal administration into mice. The results of the present study suggested that it may be useful as the basis of a new oral cholera vaccine combining LAB and CTB.


Subject(s)
Antigens, Bacterial/metabolism , Cholera Toxin/metabolism , Lactobacillus/metabolism , Animals , Antibodies, Bacterial/blood , Antigens, Bacterial/immunology , Cholera Toxin/genetics , Cholera Toxin/immunology , Cholera Vaccines/administration & dosage , Escherichia coli/genetics , Female , Gangliosides/metabolism , Immunoglobulin G/blood , Mice , Mice, Inbred BALB C , Plasmids , Recombinant Proteins/metabolism
10.
J Biosci Bioeng ; 116(1): 91-100, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23415487

ABSTRACT

A DDE-degrading bacterium, Janibacter sp. TYM3221, is able to grow on biphenyl and degrades 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE) via a meta-ring cleavage pathway. The bphAa gene, encoding a biphenyl dioxygenase large subunit, was previously demonstrated to be involved in the degradation of DDE in TYM3221. The bph gene cluster, containing orf2 and bphDAaAbAcAdBCST was cloned and characterized. Reverse transcription-PCR (RT-PCR) analysis indicated that these genes were transcribed as an operon. The real-time RT-PCR on orf2, bphAa, bphC, and bphS suggest the presence of the inducible orf2 promoter (orf2p) and constitutive bphAa promoter (bphAap). The TYM3221 bphST conducted biphenyl-dependent inducible activation plus constitutive basal activation of orf2p and constitutive activation of bphAap in a rhodococcal host strain, Rhodococcus erythropolis IAM1399, suggesting that expression of the TYM3221 bph operon depends on the bphST-coded two-component regulatory system. Both of these promoters were also induced by the bphS1T1 of a biphenyl degrader, Rhodococcus jostii RHA1, and contained the 24-bp consensus sequences of RHA1 bphS1T1-dependent promoters. The replacement of RHA1 bphS1 with TYM3221 bphS in combination with RHA1 bphT1 suggests that TYM3221 bphS is responsible for low inducible and high constitutive activation of orf2p in IAM1399 by the TYM3221 bphST-system. Expression of bphAaAbAcAdBC in IAM1399 resulted in the transformation of DDE to the meta-ring cleavage product via 2,3-hydroxylation, suggesting that these genes are involved in DDE degradation.


Subject(s)
Actinomycetales/genetics , Dichlorodiphenyl Dichloroethylene/metabolism , Gene Expression Regulation, Bacterial , Actinomycetales/metabolism , Base Sequence , Biphenyl Compounds/metabolism , Consensus Sequence , Dichlorodiphenyl Dichloroethylene/chemistry , Dioxygenases/genetics , Dioxygenases/metabolism , Molecular Sequence Data , Operon , Promoter Regions, Genetic , Rhodococcus/genetics , Rhodococcus/metabolism
11.
Microbes Infect ; 15(2): 96-104, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23182970

ABSTRACT

Lactic acid bacteria (LAB) show anti-inflammatory effects, and their genomic DNA was identified as one of the anti-inflammatory components. Despite the differences in anti-inflammatory effects between live LAB dependent not only on genus but also species, this effect has not been compared at the genomic DNA level. We compared the anti-inflammatory effects of the genomic DNA from five Lactobacillus species-Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus plantarum, and Lactobacillus reuteri-using Caco-2 cells. To evaluate anti-inflammatory effects, decreases in H(2)O(2)-induced IL-8 secretion and inhibition of H(2)O(2)-induced NF-κB/IκB-α system activation were examined. All LAB genomic DNAs dose-dependently decreased H(2)O(2)-induced IL-8 secretion and inhibited H(2)O(2)-induced NF-κB/IκB-α system activation. Comparison of these effects between Lactobacillus species showed that the anti-inflammatory effects of L. acidophilus genomic DNA are lower than those of the other species. Furthermore, suppression of Toll-like receptor 9 (TLR9), a specific receptor of bacterial DNA, expression by RNAi abolished the decrease of H(2)O(2)-induced IL-8 secretion and inhibition of H(2)O(2)-induced NF-κB/IκB-α system activation by LAB genomic DNA. Our results demonstrated that the anti-inflammatory effects of genomic DNA differ between Lactobacillus species and TLR9 is one of the major pathways responsible for the anti-inflammatory effect of LAB genomic DNA.


Subject(s)
DNA, Bacterial/immunology , Hydrogen Peroxide/pharmacology , Interleukin-8/metabolism , Lactobacillus/genetics , Toll-Like Receptor 9/immunology , Active Transport, Cell Nucleus , Anti-Inflammatory Agents/immunology , Caco-2 Cells , Cell Nucleus/drug effects , Cell Nucleus/pathology , DNA, Bacterial/genetics , Dose-Response Relationship, Drug , Escherichia coli/genetics , Escherichia coli/immunology , Genome, Bacterial , Humans , I-kappa B Proteins/immunology , I-kappa B Proteins/metabolism , Lactobacillus/immunology , NF-KappaB Inhibitor alpha , NF-kappa B/immunology , NF-kappa B/metabolism , Proteolysis , RNA Interference , Signal Transduction , Toll-Like Receptor 9/metabolism
12.
Parasit Vectors ; 5: 92, 2012 May 10.
Article in English | MEDLINE | ID: mdl-22574823

ABSTRACT

BACKGROUND: Mosquito-borne viruses are transmitted to human hosts via blood-feeding behavior of female mosquitoes. Female mosquitoes seek a host to take blood meals (host-seeking behavior). In order to prevent virus infections, it is important to understand how they modulate host-seeking behavior. Dopamine (DA) in the central nervous system acts as a neuromediator that regulates a variety of behaviors in insects. In female mosquitoes, host-seeking behavior increases when DA levels in the head decline after emergence. However, it remains unclear whether DA directly modulates host-seeking behavior in female mosquitoes. The aim of this study was to examine whether changes in DA levels in the head affects host-seeking activity in the adult female mosquito Aedes albopictus (Ae. albopictus). FINDINGS: We compared host-seeking behavior in one group of emerging female adults treated with l-ß-3,4-dihydroxyphenylalanine (L-DOPA), the precursor of DA, (L-DOPA group), with that in an untreated control (control group) after confirming elevation of head DA in L-DOPA group by using high-performance liquid chromatography. The content of head DA in L-DOPA group significantly remained higher than that in controls on all days examined. The host-seeking activity in the control group showed a gradual increase over the 6-day experimental period. In contrast, there was no such increase in the host-seeking activity in the L-DOPA group. Therefore, the host-seeking activity of L-DOPA group was significantly lower than that of the controls between day 3 and 6 post-emergence. CONCLUSION: Our results indicate that elevation of DA level reduces host-seeking activity in adult female mosquito Ae. albopictus.


Subject(s)
Aedes/drug effects , Dopamine Agents/pharmacology , Dopamine/pharmacology , Feeding Behavior/drug effects , Levodopa/pharmacology , Animals , Female , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...