Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 187: 106465, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37178734

ABSTRACT

Colorectal cancer (CRC) is the third most common cancer in the world, but current chemotherapy options are limited due to adverse effects and low oral bioavailability of drugs. In this study, we investigated the obtainment parameters and composition of new multiple nanoemulsions (MN) based on microemulsions for oral co-delivery of 5-fluorouracil (5FU) and short-chain triglycerides (SCT, either tributyrin or tripropionin). The area of microemulsion formation was increased from 14% to 38% when monocaprylin was mixed with tricaprylin as oil phase. Addition of SCT reduced this value to 24-26%. Using sodium alginate aqueous dispersion as internal aqueous phase (to avoid phase inversion) did not further affected the area but increased microemulsion viscosity by 1.5-fold. To obtain the MN, selected microemulsions were diluted in an external aqueous phase; droplet size was 500 nm and stability improved using polyoxyethylene oleyl ether at 1-2.5% as surfactant in the external phase and a dilution ratio of 1:1 (v/v). 5FU in vitro release could be better described by the Korsmeyer-Peppas model. No pronounced changes in droplet size were observed when selected MNs were incubated in buffers mimicking gastrointestinal fluids. The 5FU cytotoxicity in monolayer cell lines presenting various mutations was influenced by its incorporation in the nanocarrier, presence of SCT and cell mutation status. The MNs selected reduced the viability of tumor spheroids (employed as 3D tumor models) by 2.2-fold compared to 5FU solution and did not affect the survival of the G. mellonella, suggesting effectiveness and safety.


Subject(s)
Colorectal Neoplasms , Fluorouracil , Humans , Surface-Active Agents , Viscosity , Triglycerides , Colorectal Neoplasms/drug therapy , Emulsions
3.
Microbiome ; 9(1): 134, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34112246

ABSTRACT

The phenotypes of allergic airway diseases are influenced by the interplay between host genetics and the gut microbiota, which may be modulated by probiotics. We investigated the probiotic effects on allergic inflammation in A/J and C57BL/6 mice. C57BL/6 mice had increased gut microbiota diversity compared to A/J mice at baseline. Acetate producer probiotics differentially modulated and altered the genus abundance of specific bacteria, such as Akkermansia and Allistipes, in mouse strains. We induced airway inflammation followed by probiotic treatment and found that only A/J mice exhibited decreased inflammation, and the beneficial effects of probiotics in A/J mice were partially due to acetate production. To understand the relevance of microbial composition colonization in the development of allergic diseases, we implanted female C57BL/6 mice with A/J embryos to naturally modulate the microbial composition of A/J mice, which increased gut microbiota diversity and reduced eosinophilic inflammation in A/J. These data demonstrate the central importance of microbiota to allergic phenotype severity. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Probiotics , Animals , Female , Inflammation , Mice , Mice, Inbred C57BL , Respiratory System
4.
Clin Transl Immunology ; 5(6): e87, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27757227

ABSTRACT

The interaction between the gut microbiota and the host immune system is very important for balancing and resolving inflammation. The human microbiota begins to form during childbirth; the complex interaction between bacteria and host cells becomes critical for the formation of a healthy or a disease-promoting microbiota. C-section delivery, formula feeding, a high-sugar diet, a high-fat diet and excess hygiene negatively affect the health of the microbiota. Considering that the majority of the global population has experienced at least one of these factors that can lead to inflammatory disease, it is important to understand strategies to modulate the gut microbiota. In this review, we will discuss new insights into gut microbiota modulation as potential strategies to prevent and treat inflammatory diseases. Owing to the great advances in tools for microbial analysis, therapeutic strategies such as prebiotic, probiotic and postbiotic treatment and fecal microbiota transplantation have gained popularity.

SELECTION OF CITATIONS
SEARCH DETAIL
...