Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
ChemMedChem ; 14(22): 1917-1932, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31659845

ABSTRACT

Retinoic-acid-related orphan receptor γt (RORγt) inverse agonists could be used for the treatment of autoimmune diseases. Previously, we reported a novel quinazolinedione 1 a with a flexible linear linker as a novel RORγt inverse agonist. A U-shaped conformation in the complex structure of 1 a with RORγt protein was confirmed. Further improvement of the pharmacokinetic (PK) profiles was required because of the low drug exposure in mice upon oral administration (mouse AUC of 1 a: 27 ng ⋅ h ⋅ mL-1 at 1 mg ⋅ kg-1 , p.o.). To improve the PK profiles, conformationally constrained U-shaped scaffolds were investigated. As a result, morpholine analogues with improved PK profiles and high potency were successfully identified. The substituent at the N1 position of the quinazoline moiety was also modified, leading to an enhancement of reporter activity. Consequently, compound 43 (N2 -(3-chloro-4-cyanophenyl)-N4 -(3-(cyclopropylmethyl)-1-isopropyl-2,4-dioxo-1,2,3,4-tetrahydroquinazolin-6-yl)morpholine-2,4-dicarboxamide) exhibited improved drug exposure (mouse AUC: 1289 ng ⋅ h ⋅ mL-1 at 1 mg ⋅ kg-1 , p.o.). In addition, suppression of IL-17A gene expression by IL-23 stimulation in a mouse pharmacodynamics model was observed for 43. The conformation of 43 with RORγt protein was also confirmed as U-shape by X-ray co-crystal structure analysis. The key interaction that boosts potency is also discussed.


Subject(s)
Cyclopentanes/pharmacology , Drug Design , Furans/pharmacology , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Administration, Oral , Animals , Crystallography, X-Ray , Cyclopentanes/administration & dosage , Cyclopentanes/chemical synthesis , Fluorescence Resonance Energy Transfer , Furans/administration & dosage , Furans/chemical synthesis , Mice , Models, Molecular , Molecular Conformation , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
3.
Bioorg Med Chem ; 26(2): 470-482, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29258712

ABSTRACT

A series of tetrahydroisoquinoline derivatives were designed, synthesized, and evaluated for their potential as novel orally efficacious retinoic acid receptor-related orphan receptor-gamma t (RORγt) inverse agonists for the treatment of Th17-driven autoimmune diseases. We carried out cyclization of the phenylglycinamide core by structure-based drug design and successfully identified a tetrahydroisoquinoline carboxylic acid derivative 14 with good biochemical binding and cellular reporter activity. Interestingly, the combination of a carboxylic acid tether and a central fused bicyclic ring was crucial for optimizing PK properties, and the compound 14 showed significantly improved PK profile. Successive optimization of the carboxylate tether led to the discovery of compound 15 with increased inverse agonistic activity and an excellent PK profile. Oral treatment of mice with compound 15 robustly and dose-dependently inhibited IL-17A production in an IL23-induced gene expression assay.


Subject(s)
Drug Discovery , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Tetrahydroisoquinolines/pharmacology , Administration, Oral , Animals , Crystallography, X-Ray , Cytokines/biosynthesis , Dose-Response Relationship, Drug , Humans , Injections, Intradermal , Interleukin-23/administration & dosage , Interleukin-23/pharmacology , Jurkat Cells , Male , Mice , Mice, Inbred BALB C , Models, Animal , Models, Molecular , Molecular Structure , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Structure-Activity Relationship , Tetrahydroisoquinolines/administration & dosage , Tetrahydroisoquinolines/chemistry
4.
J Med Chem ; 60(18): 7658-7676, 2017 09 28.
Article in English | MEDLINE | ID: mdl-28759228

ABSTRACT

Herein, we describe the discovery of a potent, selective, brain-penetrating, in vivo active phosphodiesterase (PDE) 2A inhibitor lead series. To identify high-quality leads suitable for optimization and enable validation of the physiological function of PDE2A in vivo, structural modifications of the high-throughput screening hit 18 were performed. Our lead generation efforts revealed three key potency-enhancing functionalities with minimal increases in molecular weight (MW) and no change in topological polar surface area (TPSA). Combining these structural elements led to the identification of 6-methyl-N-((1R)-1-(4-(trifluoromethoxy)phenyl)propyl)pyrazolo[1,5-a]pyrimidine-3-carboxamide (38a), a molecule with the desired balance of preclinical properties. Further characterization by cocrystal structure analysis of 38a bound to PDE2A uncovered a unique binding mode and provided insights into its observed potency and PDE selectivity. Compound 38a significantly elevated 3',5'-cyclic guanosine monophosphate (cGMP) levels in mouse brain following oral administration, thus validating this compound as a useful pharmacological tool and an attractive lead for future optimization.


Subject(s)
Brain/drug effects , Cyclic Nucleotide Phosphodiesterases, Type 2/antagonists & inhibitors , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/pharmacokinetics , Pyrimidines/pharmacology , Pyrimidines/pharmacokinetics , Administration, Oral , Animals , Brain/metabolism , Cognition Disorders/drug therapy , Cognition Disorders/enzymology , Cognition Disorders/metabolism , Cyclic GMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Drug Discovery , Humans , Male , Mice , Mice, Inbred ICR , Molecular Docking Simulation , Phosphodiesterase Inhibitors/administration & dosage , Phosphodiesterase Inhibitors/chemistry , Pyrimidines/administration & dosage , Pyrimidines/chemistry , Rats
5.
J Med Chem ; 60(16): 6942-6990, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28699740

ABSTRACT

A novel class of therapeutic drug candidates for heart failure, highly potent and selective GRK2 inhibitors, exhibit potentiation of ß-adrenergic signaling in vitro studies. Hydrazone derivative 5 and 1,2,4-triazole derivative 24a were identified as hit compounds by HTS. New scaffold generation and SAR studies of all parts resulted in a 4-methyl-1,2,4-triazole derivative with an N-benzylcarboxamide moiety with highly potent activity toward GRK2 and selectivity over other kinases. In terms of subtype selectivity, these compounds showed enough selectivity against GRK1, 5, 6, and 7 with almost equipotent inhibition to GRK3. Our medicinal chemistry efforts led to the discovery of 115h (GRK2 IC50 = 18 nM), which was obtained the cocrystal structure with human GRK2 and an inhibitor of GRK2 that potentiates ß-adrenergic receptor (ßAR)-mediated cAMP accumulation and prevents internalization of ßARs in ß2AR-expressing HEK293 cells treated with isoproterenol. Therefore, 115h appears to be a novel class of therapeutic for heart failure treatment.


Subject(s)
G-Protein-Coupled Receptor Kinase 2/antagonists & inhibitors , Heart Failure/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Triazoles/pharmacology , meta-Aminobenzoates/pharmacology , Crystallography, X-Ray , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors/chemical synthesis , Cytochrome P-450 CYP3A Inhibitors/chemistry , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Drug Design , HEK293 Cells , High-Throughput Screening Assays , Humans , Hydrazones/chemical synthesis , Hydrazones/chemistry , Hydrazones/pharmacology , Protein Kinase C-alpha/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Receptors, Adrenergic, beta/metabolism , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry , meta-Aminobenzoates/chemical synthesis , meta-Aminobenzoates/chemistry , rho-Associated Kinases/antagonists & inhibitors
6.
Bioorg Med Chem Lett ; 27(11): 2497-2501, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28400232

ABSTRACT

We previously reported a facile preparation method of 3-substituted-2,6-difluoropyridines, which were easily converted to 2,3,6-trisubstituted pyridines by nucleophilic aromatic substitution with good regioselectivity and yield. In this study, we demonstrate the synthetic utility of 3-substituted-2,6-difluoropyridines in drug discovery via their application in the synthesis of various 2,3,6-trisubstituted pyridines, including macrocyclic derivatives, as novel protein kinase C theta inhibitors in a moderate to good yield. This synthetic approach is useful for the preparation of 2,3,6-trisubstituted pyridines, which are a popular scaffold for drug candidates and biologically attractive compounds.


Subject(s)
Isoenzymes/antagonists & inhibitors , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Pyridines/chemistry , Drug Design , Humans , Isoenzymes/metabolism , Protein Kinase C/metabolism , Protein Kinase C-theta , Protein Kinase Inhibitors/chemistry , Pyridines/chemical synthesis
7.
Bioorg Med Chem ; 22(19): 5428-45, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25187277

ABSTRACT

In the course of our study on selective nonsteroidal mineralocorticoid receptor (MR) antagonists, a series of novel benzoxazine derivatives possessing an azole ring as the core scaffold was designed for the purpose of attenuating the partial agonistic activity of the previously reported dihydropyrrol-2-one derivatives. Screening of alternative azole rings identified 1,3-dimethyl pyrazole 6a as a lead compound with reduced partial agonistic activity. Subsequent replacement of the 1-methyl group of the pyrazole ring with larger lipophilic side chains or polar side chains targeting Arg817 and Gln776 increased MR binding activity while maintaining the agonistic response at the lower level. Among these compounds, 6-[1-(2,2-difluoro-3-hydroxypropyl)-5-(4-fluorophenyl)-3-methyl-1H-pyrazol-4-yl]-2H-1,4-benzoxazin-3(4H)-one (37a) showed highly potent in vitro activity, high selectivity versus other steroid hormone receptors, and good pharmacokinetic profiles. Oral administration of 37a in deoxycorticosterone acetate-salt hypertensive rats showed a significant blood pressure-lowering effect with no signs of antiandrogenic effects.


Subject(s)
Drug Discovery , Mineralocorticoid Receptor Antagonists/pharmacology , Oxazines/pharmacology , Pyrazoles/pharmacology , Receptors, Mineralocorticoid/metabolism , Androgen Antagonists/administration & dosage , Androgen Antagonists/chemistry , Androgen Antagonists/pharmacology , Animals , Antihypertensive Agents/administration & dosage , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacology , COS Cells , Chlorocebus aethiops , Crystallography, X-Ray , Desoxycorticosterone Acetate , Dose-Response Relationship, Drug , Humans , Hypertension/chemically induced , Hypertension/drug therapy , Male , Mineralocorticoid Receptor Antagonists/administration & dosage , Mineralocorticoid Receptor Antagonists/chemistry , Models, Molecular , Molecular Structure , Oxazines/administration & dosage , Oxazines/chemistry , Pyrazoles/administration & dosage , Pyrazoles/chemistry , Rats , Rats, Wistar , Receptors, Mineralocorticoid/agonists , Structure-Activity Relationship
8.
Bioorg Med Chem ; 21(19): 5983-94, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23958516

ABSTRACT

Dihydrofuran-2-one and dihydropyrrol-2-one derivatives were identified as novel, potent and selective mineralocorticoid receptor (MR) antagonists by the structure-based drug design approach utilizing the crystal structure of MR/compound complex. Introduction of lipophilic substituents directed toward the unfilled spaces of the MR and identification of a new scaffold, dihydropyrrol-2-one ring, led to potent in vitro activity. Among the synthesized compounds, dihydropyrrol-2-one 11i showed an excellent in vitro activity (MR binding IC50=43nM) and high selectivity over closely related steroid receptors such as the androgen receptor (AR), progesterone receptor (PR) and glucocorticoid receptor (GR) (>200-fold for AR and PR, 100-fold for GR).


Subject(s)
Benzofurans/chemistry , Benzoxazines/chemistry , Drug Design , Mineralocorticoid Receptor Antagonists/chemical synthesis , Pyrroles/chemistry , Animals , COS Cells , Chlorocebus aethiops , Crystallography, X-Ray , Inhibitory Concentration 50 , Mineralocorticoid Receptor Antagonists/chemistry , Mineralocorticoid Receptor Antagonists/pharmacology , Protein Binding/drug effects , Structure-Activity Relationship
9.
J Med Chem ; 54(24): 8616-31, 2011 Dec 22.
Article in English | MEDLINE | ID: mdl-22074142

ABSTRACT

Mineralocorticoid receptor (MR) blockade has come into focus as a promising approach for the treatment of cardiovascular diseases such as hypertension and congestive heart failure. In order to identify a novel class of nonsteroidal MR antagonists that exhibit significant potency and good selectivity over other steroidal hormone receptors, we designed a novel series of benzoxazin-3-one derivatives and synthesized them from 6-(7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-6-yl)-2H-1,4-benzoxazin-3(4H)-one (1a), high-throughput screening (HTS) hit compound. Our design was based on a crystal structure of an MR/compound complex and a docking model. In the course of lead generation from 1a, a 1,2-diaryl framework was characterized as a key structure with high binding affinity. On the basis of scaffold hopping and optimization studies, benzoxazin-3-one derivatives possessing 1-phenyl-3-trifluoromethylpyrazol-5-yl moiety at the 6-position were identified as a novel series of potent and selective MR antagonists. Among these compounds, 6-[1-(4-fluoro-2-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl]-2H-1,4-benzoxazin-3(4H)-one (14n) showed highly potent activity and good selectivity and also exhibited a significant antihypertensive effect in deoxycorticosterone acetate-salt hypertensive rats. On the basis of these results, compound 14n was progressed for further pharmacological evaluation.


Subject(s)
Antihypertensive Agents/chemical synthesis , Benzoxazines/chemical synthesis , Mineralocorticoid Receptor Antagonists , Pyrazoles/chemical synthesis , Animals , Antihypertensive Agents/pharmacokinetics , Antihypertensive Agents/pharmacology , Benzoxazines/pharmacokinetics , Benzoxazines/pharmacology , Binding, Competitive , Crystallography, X-Ray , Microsomes, Liver/metabolism , Models, Molecular , Protein Conformation , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Rats , Rats, Wistar , Structure-Activity Relationship
10.
Bioorg Med Chem ; 16(8): 4699-714, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18313930

ABSTRACT

3-Metoxycarbonyl isoquinolone derivative 1 has been identified as a potent JNK inhibitor and significantly inhibited cardiac hypertrophy in a rat pressure-overload model. Herein, a series of isoquinolones with an imidazolylmethyl or a pyrazolylmethyl group at the 2-position were designed based on X-ray crystallographic analysis of the complex between the isoquinolone compound and JNK3, as wells as the relationship between compound lipophilicity (logD) and activity in a cell-based assay. The compounds prepared showed potent JNK1 inhibitory activities in a cell-based assay. Among them the isoquinolone derivative possessing 5-[(cyclopropylamino)carbonyl]-1-methyl-1H-pyrazole (16e) exhibited significant anti-hypertrophic activity at doses of more than 1mg/kg (po) in a pressure-overload model.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Isoquinolines/chemical synthesis , Isoquinolines/pharmacology , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/metabolism , Alcohols/chemistry , Aldehydes/chemistry , Animals , Cell Line , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Isoquinolines/chemistry , JNK Mitogen-Activated Protein Kinases/chemistry , Male , Models, Molecular , Molecular Structure , Rats , Rats, Wistar , Structure-Activity Relationship
11.
J Med Chem ; 45(14): 3009-21, 2002 Jul 04.
Article in English | MEDLINE | ID: mdl-12086486

ABSTRACT

In the course of our research into new types of non-acylguanidine Na(+)/H(+) exchanger (NHE) inhibitors, we designed and synthesized aryl-fused tetrahydropyranylidene and cyclohexylidene aminoguanidine derivatives I (X = O, CH(2)), which were tested for their inhibitory effects on rat platelet NHEs. After optimization, we found that the S isomer of tetrahydroquinoline derivatives that possess a methyl group in the 4-position and a halogen or methyl group in the o-position of Ar(2) exhibited high inhibitory activity. In these compounds, (5E,7S)-[[7-(5-fluoro-2-methylphenyl)-4-methyl-7,8-dihydro-5(6H)-quinolinylidene]amino]guanidine dimethanesulfonate (18, T-162559) was found to be a potent inhibitor of both rat and human platelet NHEs, with IC(50) values of 14 and 13 nM, respectively. Furthermore, in a rat myocardial infarction model in vivo (1 h ischemia-24 h reperfusion), 18 (0.1 mg/kg, intravenously administered 5 min or 2 h before coronary occlusion) showed significant activity (33% or 23% inhibition, respectively). These results suggested that 18 may exhibit a potent and long-lasting protective activity against cardiac injuries induced by ischemia-reperfusion.


Subject(s)
Cardiovascular Agents/chemical synthesis , Guanidines/chemical synthesis , Quinolines/chemical synthesis , Sodium-Hydrogen Exchangers/antagonists & inhibitors , Animals , Blood Platelets/drug effects , Blood Platelets/metabolism , Cardiovascular Agents/chemistry , Cardiovascular Agents/pharmacology , Crystallography, X-Ray , Guanidines/chemistry , Guanidines/pharmacology , Humans , Male , Molecular Structure , Myocardial Infarction/pathology , Quinolines/chemistry , Quinolines/pharmacology , Rats , Rats, Wistar , Stereoisomerism , Structure-Activity Relationship
12.
Br J Pharmacol ; 135(8): 1995-2003, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11959803

ABSTRACT

1. We investigated the inhibitory effects of a non-acylguanidine Na(+)-H(+) exchange (NHE) inhibitor, T-162559 ((5E,7S)-[7-(5-fluoro-2-methylphenyl)-4-methyl-7,8-dihydro-5(6H)-quinolinylideneamino] guanidine dimethanesulphonate), on NHE-1, and its cardioprotective effect against ischaemia and reperfusion injury in rats and rabbits. 2. T-162559 inhibited human platelet NHE-1 in a concentration-dependent manner, with an IC(50) value of 13+/-3 nmol l(-1), making it 16 and three times more potent than cariporide IC(50): 209+/-75 nmol l(-1), P<0.01) and eniporide (IC(50): 40+/-11 nmol l(-1), P=0.066), respectively. T-162559 also inhibited rat NHE-1 with an IC(50) value of 14+/-2 nmol l(-1), which was five and three times lower than that of cariporide (IC(50): 75+/-7 nmol l(-1), P<0.01) and eniporide (IC(50): 44+/-2 nmol l(-1), P<0.01), respectively. 3. T-162559 inhibited, in a concentration-dependent manner, the reduction in cardiac contractility, progression of cardiac contracture, and increase in lactate dehydrogenase release after global ischaemia and reperfusion in perfused rat hearts. The inhibitory effects of T-162559 were observed at a lower concentration range (10 - 100 nmol l(-1)) than with cariporide and eniporide. T-162559 did not alter basal cardiac contractility or coronary flow after reperfusion, suggesting that it exerts direct cardioprotective effects on the heart. 4. Intravenous administration of T-162559 (0.03 and 0.1 mg kg(-1)) significantly inhibited the progression of myocardial infarction induced by left coronary artery occlusion and reperfusion in rabbits; the infarct size normalized by area at risk was 74+/-6% in the vehicle group, and 47+/-5% and 51+/-7% in the T-162559-0.03 mg kg(-1) and T-162559-0.1 mg kg(-1) groups (both P<0.05), respectively. 5. These results indicate that the new structural NHE-1 inhibitor T-162559 is more potent than cariporide and eniporide and possesses a cardioprotective effect against ischaemia and reperfusion injury in rat and rabbit models.


Subject(s)
Guanidines/administration & dosage , Guanidines/pharmacology , Quinolines/administration & dosage , Quinolines/pharmacology , Sodium-Hydrogen Exchangers/antagonists & inhibitors , Animals , Blood Platelets/drug effects , Blood Platelets/metabolism , Cardiotonic Agents/administration & dosage , Cardiotonic Agents/pharmacology , Dose-Response Relationship, Drug , Guanidines/chemistry , Humans , In Vitro Techniques , Injections, Intravenous , Male , Myocardial Infarction/pathology , Myocardial Infarction/prevention & control , Myocardial Ischemia/drug therapy , Myocardial Reperfusion Injury/drug therapy , Quinolines/chemistry , Rabbits , Rats , Rats, Wistar , Sulfones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...