Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Aquat Anim Health ; 34(4): 197-207, 2022 12.
Article in English | MEDLINE | ID: mdl-35959541

ABSTRACT

OBJECTIVE: Edwardsiella tarda has been regarded as the causative agent of edwardsiellosis in cultured marine and freshwater fish species in Japan. Our previous study genetically classified an E. tarda-like isolate from diseased Olive Flounder Paralichthys olivaceus as E. piscicida and that from diseased Red Seabream Pagrus major as E. anguillarum. This study aimed to understand the phenotypic differences between E. piscicida and E. anguillarum. METHODS: Fourteen E. piscicida and seven E. anguillarum isolates were used in this study. The colonies of each isolate were grown on brain-heart infusion agar plates and then subjected to DNA extraction. The extracted DNA was amplified using PCR. carbohydrate fermentation of the isolates was examined using API 50 CH test kits. Moreover, the growth of the two species was examined in defined media. Also, free amino acids in Olive Flounder and Red Seabream sera were detected and quantified via high-performance liquid chromatography-mass spectrometry. Statistical differences in the concentrations of free amino acids were analyzed using Welch's t-tests. RESULT: The API 50 CH test revealed that L-arabinose and D-mannitol were fermented by E. anguillarum isolates but not E. piscicida isolates. Furthermore, the growth of E. piscicida and E. anguillarum was reduced in the defined medium without methionine and iron sulfate. The growth of E. piscicida was reduced in the defined medium without phenylalanine, tyrosine, alanine, or nicotinic acid, whereas the growth of E. anguillarum was reduced in the defined medium without serine, cysteine, leucine, threonine, or isoleucine. Tyrosine and alanine were present in higher concentrations in the Olive Flounder serum, whereas threonine and isoleucine were present in higher concentrations in the Red Seabream serum, suggesting favorable growth conditions for E. piscicida and E. anguillarum. CONCLUSION: This study characterizes a minimal defined medium that can be used for developing vaccines against E. piscicida and E. anguillarum.


Subject(s)
Enterobacteriaceae Infections , Fish Diseases , Flounder , Perciformes , Animals , Japan/epidemiology , Isoleucine , Enterobacteriaceae Infections/veterinary , Enterobacteriaceae Infections/prevention & control , Edwardsiella tarda/genetics , Alanine , Fish Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL