Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
J Virol Methods ; 328: 114952, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38754768

ABSTRACT

Primary cell cultures derived from human embryo lung play a crucial role in virology by aiding virus propagation and vaccine development. These cultures exhibit a notable ability to undergo multiple subcultures, often reaching up to 70 passages. However, finding alternative primary cell cultures with similar longevity and usefulness is challenging. In this study, we introduce a novel primary culture cells derived from equine embryo brain (FEB), which cells exhibited remarkable long-term cultivation potential. The FEB was established and maintained using Sumitomo Nerve-Cell Culture System Comparison studies were conducted with fetal equine kidney cell line (FEK-Tc13) to assess growth rates and subculture longevity. Immunological characterization was performed using neuronal markers to confirm the neural nature of FEB cells. Viral growth assessments were conducted using equine herpesviruses (EHV-1 and EHV-4) to evaluate infectivity and cytopathic effects in FEB cells. PCR analysis and real-time PCR assays were employed to detect viral genomic DNA and transcription activity of EHVs in infected FEB cells. FEB cells demonstrated faster growth rates compared to fetal equine kidney cell line (FEK-Tc13 cells) and exhibited sustained subculture capability exceeding 50 passages. Immunostaining confirmed the glial identity of FEB cells. Both equine herpesviruses 1 and 4 EHV-1 and EHV-4 viruses efficiently replicated in FEB cells, resulting in clear cytopathic effects. PCR analysis detected genomic DNA of EHVs in infected FEB cells, indicating successful viral infection. The establishment of FEB cells with extended subculture capability highlights their potential utility as a model system for studying neural cell biology and viral infections.

2.
Microbiol Resour Announc ; : e0116923, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38682775

ABSTRACT

We report here the whole-genome sequence of the Chlamydia psittaci NRM_5 strain isolated from the fecal samples of wild Indian ring-necked parakeet (Psittacula krameri manillensis) in Japan. The sequence type is ST35, which is known to be associated with pigeons and doves, indicating the potential for transmission among bird species.

3.
J Vet Med Sci ; 85(9): 907-911, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37460299

ABSTRACT

Chlamydia-related bacteria of the Chlamydiales order have recently been described as emerging pathogens that cause pneumonia and abortion in animals and humans. We investigated the presence of Chlamydiales using real-time polymerase chain reaction (PCR) by targeting the 16S rRNA gene of a broad range of Chlamydiales in 827 fecal samples from pet birds kept in individual homes in Japan. Of the 827 samples, 493 (59.6%) tested positive for the Chlamydiales 16S rRNA gene in the real-time PCR assay. We determined the nucleic acid sequences of PCR products from 17 Chlamydiales strains. A homology search and phylogenetic analysis using these sequences confirmed that the detected Chlamydiales included C. pecorum and a broad range of Chlamydia-related bacteria. To the best of our knowledge, this is the first study to detect a wide range of Chlamydia-related bacteria in birds.


Subject(s)
Chlamydiales , Humans , Pregnancy , Female , Animals , Chlamydiales/genetics , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/analysis , Phylogeny , Japan/epidemiology , Real-Time Polymerase Chain Reaction/veterinary , DNA, Bacterial/genetics
4.
One Health ; 16: 100559, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37363238

ABSTRACT

Mycobacterium avium subsp. hominissuis (MAH) is one of the most prevalent mycobacteria causing non-tuberculous mycobacterial disease in humans and animals. Of note, MAH is a major cause of mycobacterial granulomatous mesenteric lymphadenitis outbreaks in pig populations. To determine the precise source of infection of MAH in a pig farm and to clarify the epidemiological relationship among pig, human and environmental MAH lineages, we collected 50 MAH isolates from pigs reared in Japan and determined draft genome sequences of 30 isolates. A variable number of tandem repeat analysis revealed that most pig MAH isolates in Japan were closely related to North American, European and Russian human isolates but not to those from East Asian human and their residential environments. Historical recombination analysis revealed that most pig isolates could be classified into SC2/4 and SC3, which contain MAH isolated from pig, European human and environmental isolates. Half of the isolates in SC2/4 had many recombination events with MAH lineages isolated from humans in East Asia. To our surprise, four isolates belonged to a new lineage (SC5) in the global MAH population. Members of SC5 had few footprints of inter-lineage recombination in the genome, and carried 80 unique genes, most of which were located on lineage specific-genomic islands. Using unique genetic features, we were able to trace the putative transmission route via their host pigs. Together, we clarify the possibility of species-specificity of MAH in addition to local adaptation. Our results highlight two transmission routes of MAH, one exposure on pig farms from the environment and the other via pig movement. Moreover, our study also warns that the evolution of MAH in pigs is influenced by MAH from patients and their residential environments, even if the MAH are genetically distinct.

5.
J Gen Virol ; 104(1)2023 01.
Article in English | MEDLINE | ID: mdl-36748631

ABSTRACT

Equine herpesvirus type 1 (EHV-1) UL11 is a 74-amino-acid (aa) protein encoded by ORF51. UL11 is modified by acylation including myristoylation and palmitoylation. Myristoylation of EHV-1 UL11 is assumed to occur on the N-terminal glycine, while palmitoylation is assumed to occur on the seventh and ninth cysteines. ORF51, which encodes the first 24 aa, overlaps ORF50 encoding UL12. We previously demonstrated that UL11 was essential for EHV-1 replication in cultured cells and that UL11 was localized at the Golgi apparatus where herpesviruses obtain their final envelope. It is unclear whether the acylation is related to the localization of EHV-1 UL11 and viral replication. In this study, we investigated the role of UL11 acylation in the intracellular localization and viral growth and replication of EHV-1. We constructed seven UL11 acylation mutant plasmids and seven UL11 acylation mutant BAC DNAs; then, we analysed the localizations of the mutant UL11s and attempted virus rescue. We found that both the N-terminal glycine and the seventh or ninth cysteine, especially N-terminal glycine, were involved in the localization of UL11 and viral replication. Taken together, these results suggest that EHV-1 viral growth requires that UL11 is modified by myristoylation of an N-terminal glycine and by palmitoylation of at least one of the cysteines, and that UL11 is localized at the Golgi apparatus. This study shows that a single amino acid in EHV-1 can determine the fate of viral replication.


Subject(s)
Herpesvirus 1, Equid , Animals , Horses , Herpesvirus 1, Equid/genetics , Glycine/metabolism , Viral Structural Proteins/metabolism , Virus Replication , Cell Line , Amino Acids/metabolism , Cysteine
6.
Vet Microbiol ; 277: 109633, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36543092

ABSTRACT

Equine herpesvirus type 1 (EHV-1) is a devastating pathogen of horses, their natural hosts, and causes fatal encephalitis in non-natural hosts. We previously demonstrated that acylation of the tegument protein UL11 is required for viral replication in cultured cells. We created a mutant virus (EHV-1 UL12 trunc UL11 G2AC7AC9A), in which glycyl and cysteinyl residues at positions 2, 7 and 9 of UL11 that are normally acylated were replaced with alanyl residues. This virus, designated the 2/7/9 mutant, has a limited-replication cycle (LRC), in which replication stops after just a few cycles. Here, we tested whether the 2/7/9 mutant could be used as a vaccine against fatal encephalitis in a mouse model. A virulence test showed that the 2/7/9 mutant was not pathogenic in mice and elicited an antibody response. We also attempted to use the 2/7/9 mutant to immunize mice against a zebra-borne EHV-1, 94-137. Two trials were conducted, each with five immunized mice, five non-immunized and five control mice. In both trials, clinical signs and fatalities were much lower in the immunized mice than in the non-immunized mice. In addition, none of the mice in either trial developed neutralizing antibodies, indicating that the immunity induced by the 2/7/9 mutant was not due to neutralizing activity. The results indicate that the 2/7/9 LRC mutant has promise as a vaccine against EHV-1 infection non-natural hosts.


Subject(s)
Encephalitis , Herpesviridae Infections , Herpesvirus 1, Equid , Horse Diseases , Horses , Animals , Mice , Herpesvirus 1, Equid/genetics , Vaccination/veterinary , Immunization/veterinary , Herpesviridae Infections/prevention & control , Herpesviridae Infections/veterinary , Encephalitis/veterinary , Virus Replication , Horse Diseases/prevention & control , Antibodies, Viral
7.
J Vet Med Sci ; 84(6): 817-823, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35491091

ABSTRACT

The members of family Chlamydiaceae have a broad host range and cause many kinds of diseases in humans and animals. Several cases of Chlamydiaceae being detected in atypical hosts have been reported recently. Consequently, cross-species monitoring of Chlamydia in wildlife and livestock is pertinent for public health, animal hygiene and wildlife conservation. In this study, we conducted molecular surveillance of Chlamydia in wild birds and livestock around a small village in the foothills of Mt. Afadjato, Ghana where direct contact between wildlife and livestock occurs. Among 29 captured wild birds and 63 livestock, 5 sheep, 30 goats and 28 chickens, the positive ratios of Chlamydia were 24.1%, 40.0%, 43.3% and 26.9%, respectively. Chlamydia pecorum was detected in wild birds, goats, sheep and chickens. On the basis of the variable domain 2 region of ompA, several samples from different hosts showed identical sequences and were phylogenetically located to the same clusters. In addition, using ompA, C. psittaci, C. abortus and C. gallinacea were also detected in this small habitat. Further genetic and pathogenic analyses of the chlamydial distribution in this area, which represents the interface of wild and domestic animal interactions, may improve our knowledge of their transmission among different hosts.


Subject(s)
Chlamydia Infections , Chlamydia , Sheep Diseases , Animals , Animals, Wild , Chickens , Chlamydia/genetics , Chlamydia Infections/epidemiology , Chlamydia Infections/veterinary , Ghana/epidemiology , Livestock , Sheep
8.
Microbiol Resour Announc ; 10(42): e0080721, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34672700

ABSTRACT

We determined the complete genome sequence of bovine coronavirus (BCoV) recovered from bloody diarrhea from adult cattle that died from winter dysentery in 2020 in Japan. Information on the complete genome sequence of BCoV, which causes deadly diarrhea in adult cattle, has great potential for a better understanding of its pathogenicity.

9.
GigaByte ; 2021: gigabyte33, 2021.
Article in English | MEDLINE | ID: mdl-36824340

ABSTRACT

Mycobacterium avium subsp. hominissuis (MAH) is one of the most important agents causing non-tuberculosis mycobacterial infection in humans and pigs. There have been advances in genome analysis of MAH from human isolates, but studies of isolates from pigs are limited despite its potential source of infection to human. Here, we obtained 30 draft genome sequences of MAH from pigs reared in Japan. The 30 draft genomes were 4,848,678-5,620,788 bp in length, comprising 4652-5388 coding genes and 46-75 (median: 47) tRNAs. All isolates had restriction modification-associated genes and 185-222 predicted virulence genes. Two isolates had tRNA arrays and one isolate had a clustered regularly interspaced short palindromic repeat (CRISPR) region. Our results will be useful for evaluation of the ecology of MAH by providing a foundation for genome-based epidemiological studies.

10.
J Comp Pathol ; 180: 35-45, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33222872

ABSTRACT

Equine herpesvirus-9 (EHV-9), equine herpesvirus-1 (EHV-1) and zebra-borne EHV-1 are members of the family Herpesviridae and cause encephalitis and rhinopneumonitis in a range of animal species. The aim of this study was to characterize and compare the rhinopneumonitis induced by experimental intranasal inoculation of groups of hamsters with EHV-9, EHV-1 strain Ab4p or zebra-borne EHV-1 viruses. Animals inoculated with EHV-9 had earlier and more severe neurological and respiratory signs than those inoculated with EHV-1 strain Ab4p or zebra-borne EHV-1. At 4-5 days post inoculation (dpi), hamsters inoculated with EHV-9 had significantly increased expression of open reading fame (ORF) 30, the viral gene encoding the DNA polymerase, in lung tissue. ORF 30 expression at these time points was higher in the hamsters infected with EHV-9 than in those inoculated with the other two viruses. Severe, mild or very mild rhinitis was seen in animals inoculated with EHV-1 strain Ab4p, EHV-9 and zebra-borne EHV-1, respectively. Viral antigen was detected in olfactory receptor neurons, inflammatory cells and desquamated epithelial cells in animals in all groups until 5 dpi. Tracheitis was also seen in all three virus-infected groups with viral antigen detected in tracheal epithelium. Inoculated hamsters developed interstitial pneumonia of increasing severity over the course of the experiment. Bronchopneumonia and vasculitis were also seen in all three infected groups. These results confirm that, in addition to their neurotropism, EHV-9 and zebra-borne EHV-1 are pneumotropic viruses. EHV-1 strain Ab4p caused more severe upper respiratory tract disease, but no significant differences were detected in the severity of pneumonia induced by each virus.


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Equid , Pneumonia, Viral/veterinary , Varicellovirus , Animals , Antigens, Viral , Cricetinae , Disease Models, Animal , Equidae , Herpesviridae Infections/veterinary , Lung/virology , Tracheitis/veterinary , Tracheitis/virology
11.
Animals (Basel) ; 10(8)2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32784541

ABSTRACT

This study aimed to follow the time-course pathogenesis of EHV-9 abortion in early and late trimesters. Twenty-seven pregnant hamster dams were divided into three groups: (G1) control, (G2) EHV-9-inoculated on the 5th day (early trimester), and (G3) EHV-9-inoculated on the 10th day of gestation (late trimester). Dams were sacrificed at different time points during gestation and examined for viremia and viral DNA in different fetal and maternal tissues and pathological changes in fetal tissue, placenta, and cytokines. Animals in G3 showed a marked increase in the number of dead fetuses than those in G2. Histopathological findings of G2 showed early band coagulative necrosis of maternal spaces and stromal decidual cells. Necrotic changes were observed within the decidua basalis, spongiotrophoblast layer, and labyrinth. First, the virus was localized within mononuclear leukocytes in the decidua capsularis and basalis, and within the necrotic chorionic villi and cervical epithelium. G3 demonstrated degenerative changes within the chorionic villi and trophospongium. The virus antigen was observed within the chorionic villi, trophoblasts, mononuclear cells, and fetal tissues. In conclusion, EHV-9 induced abortion mostly occurs through necrosis of the chorionic villi and cannot cross through the capsular placenta in the early trimester but can through the developed decidual placentation.

12.
J Wildl Dis ; 56(4): 851-862, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32402237

ABSTRACT

Nontuberculous mycobacteria (NTM) are opportunistic pathogens of humans and animals and are transmitted among the environment, wildlife, livestock, and humans. The aim of this study was to investigate the rate of isolation and antimicrobial susceptibility of NTM in wildlife. In total, 178 samples of feces (n=131) and tissues (n=47) were collected from 11 wildlife species in Gifu Prefecture and Mie Prefecture, Japan, between June 2016 and October 2018. We isolated NTM from 15.3% (20/ 131) of fecal samples using Ogawa medium, and isolates were identified by sequencing the rpoB and hsp65 genes. The rpoB sequences were compared with those from other strains of human and environmental origin. The NTM isolates were obtained from sika deer (Cervus nippon), wild boar (Sus scrofa), Japanese monkey (Macaca fuscata), raccoon dog (Nyctereutes procyonoides), masked palm civet (Paguma larvata), and Japanese weasel (Mustela itatsi) and were classified as rapidly growing mycobacteria (RGM) and slowly growing mycobacteria (SGM). The 12 RGM identified were Mycolicibacterium peregrinum (n=5), Mycolicibacterium fortuitum (n=3), Mycolicibacterium septicum (n=3), and Mycolicibacterium thermoresistibile (n=1), and the eight SGM were Mycobacterium paraense (n=4), Mycolicibacter arupensis (n=2), Mycolicibacter virginiensis (n=1), and Mycobacterium nebraskense (n=1). The NTM from wildlife showed ≥99% similarity with strains from different sources including humans. The RGM were susceptible to the antimicrobial agents tested except for M. fortuitum, which was resistant to azithromycin and clarithromycin. The SGM showed multiple drug resistance qualities but were susceptible to amikacin, clarithromycin, and rifabutin. These results indicate that wildlife may be reservoir hosts of NTM in Japan. The presence of antimicrobial-resistant NTM in wildlife suggests that the trends of NTM antimicrobial susceptibility in wildlife should be monitored.


Subject(s)
Animals, Wild/microbiology , Nontuberculous Mycobacteria/isolation & purification , Animals , Disease Reservoirs/microbiology , Disease Reservoirs/veterinary , Feces/microbiology , Japan , Nontuberculous Mycobacteria/genetics , Phylogeny
13.
Nat Commun ; 11(1): 2396, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32409666

ABSTRACT

Protein arginine methyltransferases (PRMTs) regulate diverse biological processes and are increasingly being recognized for their potential as drug targets. Here we report the discovery of a potent, selective, and cell-active chemical probe for PRMT7. SGC3027 is a cell permeable prodrug, which in cells is converted to SGC8158, a potent, SAM-competitive PRMT7 inhibitor. Inhibition or knockout of cellular PRMT7 results in drastically reduced levels of arginine monomethylated HSP70 family stress-associated proteins. Structural and biochemical analyses reveal that PRMT7-driven in vitro methylation of HSP70 at R469 requires an ATP-bound, open conformation of HSP70. In cells, SGC3027 inhibits methylation of both constitutive and inducible forms of HSP70, and leads to decreased tolerance for perturbations of proteostasis including heat shock and proteasome inhibitors. These results demonstrate a role for PRMT7 and arginine methylation in stress response.


Subject(s)
Arginine/metabolism , HSP70 Heat-Shock Proteins/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Stress, Physiological , Animals , Gene Knockdown Techniques , HCT116 Cells , Humans , Methylation/drug effects , Protein Processing, Post-Translational/drug effects , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/genetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sf9 Cells
15.
Microorganisms ; 8(2)2020 Feb 15.
Article in English | MEDLINE | ID: mdl-32075341

ABSTRACT

The grasscutter (also known as the greater cane rat; Thryonomys swinderianus) is a large rodent native to West Africa that is currently under domestication process for meat production. However, little is known about the physiology of this species. In the present study, aiming to provide information about gut microbiota of the grasscutter and better understand its physiology, we investigated the intestinal microbiota of grasscutters and compared it with that of other livestock (cattle, goat, rabbit, and sheep) using 16S rRNA metagenomics analysis. Similar to the other herbivorous animals, bacteria classified as Bacteroidales, Clostridiales, Ruminococcaceae, and Lachnospiraceae were abundant in the microbiome of grasscutters. However, Prevotella and Treponema bacteria, which have fiber fermentation ability, were especially abundant in grasscutters, where the relative abundance of these genera was higher than that in the other animals. The presence of these genera might confer grasscutters the ability to easily breakdown dietary fibers. Diets for grasscutters should be made from ingredients not consumed by humans to avoid competition for resources and the ability to digest fibers may allow the use of fiber-rich feed materials not used by humans. Our findings serve as reference and support future studies on changes in the gut microbiota of the grasscutter as domestication progresses in order to establish appropriate feeding methods and captivity conditions.

16.
Acta Trop ; 205: 105388, 2020 May.
Article in English | MEDLINE | ID: mdl-32035054

ABSTRACT

Ticks and tick-borne pathogens constitute a great threat to livestock production and are a potential health hazard to humans. Grasscutters (Thryonomys swinderianus) are widely hunted for meat in Ghana and many other West and Central African countries. However, tick-borne zoonotic risks posed by wild grasscutters have not been assessed. The objective of this study was to investigate bacterial and protozoan pathogens in ticks infecting wild grasscutters. A total of 81 ticks were collected from three hunted grasscutters purchased from Kantamanto, the central bushmeat market in Accra. Ticks were identified as Ixodes aulacodi and Rhipicephalus sp. based on morphological keys, which were further confirmed by sequencing mitochondrial 16S ribosomal DNA (rDNA) and cytochrome oxidase I (COI) genes of specimens. Protozoan infections were tested by PCR amplifying 18S rDNA of Babesia/Theileria/Hepatozoon, while bacterial infections were evaluated by PCRs or real-time PCRs targeting Anaplasmataceae, Borrelia, spotted fever group rickettsiae, chlamydiae and Candidatus Midichloria mitochondrii. The results of PCR screening showed that 35.5% (27 out of 76) of I. aulacodi were positive for parasite infections. Sequencing analysis of the amplified products gave one identical sequence showing similarity with Babesia spp. reported from Africa. The Ca. M. mitochondrii endosymbiont was present in 85.5% (65 out of 76) of I. aulacodi but not in the five Rhipicephalus ticks. Two Anaplasmataceae bacteria genetically related to Ehrlichia muris and Anaplasma phagocytophilum were also detected in two I. aulacodi. None of the ticks were positive for Borrelia spp., spotted fever group rickettsiae and chlamydiae. Since I. aulacodi on wild grasscutters are potential carriers of tick-borne pathogens, some of which could be of zoonotic potential, rigorous tick control and pathogen analyses should be instituted especially when wild caught grasscutters are being used as foundation stock for breeding.


Subject(s)
Babesia/isolation & purification , Bacteria/isolation & purification , Ixodes/microbiology , Ixodes/parasitology , Rodentia/parasitology , Theileria/isolation & purification , Animals , Female , Ghana , Humans , Male , Tick-Borne Diseases/parasitology
17.
Microbiol Immunol ; 64(2): 123-132, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31758567

ABSTRACT

Equine herpesvirus-1 (EHV-1), which causes encephalomyelitis in horses, shows endotheliotropism in the central nervous system of horses, and generally does not infect neurons. However, little is known about the mechanism underlying the resistance of neuron to EHV-1, due to the lack of convenient cell culture systems. In this study, we examined EHV-1 infection in immortalized Rn33B rat neuronal cells, which differentiate into neurons when cultured under nonpermissive conditions. Because murine cell lines are resistant to EHV-1 infections due to the lack of functional entry receptors for EHV-1, we used an Rn33B-derived cell line that stably expresses the equine MHC class 1 molecule, which acts as EHV-1 entry receptor (Rn33B-A68B2M cells). EHV-1 infected undifferentiated Rn33B-A68B2M cells more efficiently than differentiated cells, resulting in the production of progeny virus in the former but not in the latter. By contrast, both differentiated and undifferentiated cells infected with herpes simplex virus-1 produced infectious viral progeny. While EHV-1 infection induced stronger expression of IFN alpha gene in differentiated cells than in undifferentiated cells, downstream IFN responses, including phosphorylation of STAT1 (signal transducer and activator of transcription 1) and expression of IFN-stimulated genes, were not activated regardless of whether cells were differentiated or not. These results suggest that neuronal differentiation of RN33B-A68B2M cells reduced their susceptibility to EHV-1, which is not due to different IFN responses. This culture system may be useful as an in vitro model for studying neuron-specific resistance to EHV-1, by investigating viral and host factors responsible for the difference in susceptibility between differentiated and undifferentiated cells.


Subject(s)
Encephalomyelitis/veterinary , Herpesviridae Infections , Herpesvirus 1, Equid/pathogenicity , Histocompatibility Antigens Class I/metabolism , Neurons/virology , Animals , Cell Differentiation , Cell Line , Encephalomyelitis/virology , Horse Diseases/virology , Horses , Immediate-Early Proteins/metabolism , Interferons/metabolism , Mice , Neurons/metabolism , Rats , Virus Internalization
18.
Vet Pathol ; 56(5): 691-702, 2019 09.
Article in English | MEDLINE | ID: mdl-30686182

ABSTRACT

Encephalitis in hamsters, which was induced by equine herpesvirus (EHV)-9, EHV-1 strain Ab4p, and zebra-borne EHV-1, was investigated and compared to assess viral kinetics and identify the progression and severity of neuropathological findings. Hamsters were inoculated with EHV-9, EHV-1 strain Ab4p, and zebra-borne EHV-1 via the nasal route and euthanized at 24, 48, 72, 96, 120, 144, and 168 hours postinoculation (HPI). The inoculated hamsters had mild to severe neurological signs at 60 to 72, 96, and 120 HPI, and the mortality rate was 75%, 0%, and 0% for animals inoculated with EHV-9, EHV-1 strain Ab4p, and zebra-borne EHV-1 viruses, respectively. Inoculated hamsters had varying degrees of rhinitis and lymphoplasmacytic meningoencephalitis, as well as differences in the severity and distribution of cerebral lesions. Furthermore, the cellular distribution of viral antigen depended on the inoculated virus. Neuronal necrosis was widely detected in animals inoculated with EHV-9, while marked perivascular cuffs of infiltrating inflammatory cells and gliosis were detected in animals inoculated with EHV-1 strain Ab4p and zebra-borne EHV-1. In the present study, 3 viruses belonging to the herpesvirus family induced encephalitis after initial propagation in the nasal cavity. These viruses might travel to the brain via the olfactory pathway and/or trigeminal nerve, showing different distributions and severities of neuropathological changes.


Subject(s)
Antigens, Viral/isolation & purification , Brain Diseases/virology , Brain/virology , Herpesviridae Infections/pathology , Herpesviridae/classification , Animals , Brain Diseases/pathology , Cricetinae , Herpesviridae Infections/virology , Male , Viral Proteins
19.
Article in English | MEDLINE | ID: mdl-30533627

ABSTRACT

Several nontuberculous mycobacteria (NTM) occasionally infect humans and animals. Here, we report the draft genome sequences of Mycolicibacter senuensis isolate GF74 (4,792,997 bp) and Mycobacterium colombiense isolates GF28 and GF76 (5,473,554 bp and 5,426,852 bp, respectively) isolated from a swine farm in Japan. These sequences provide further information on NTM research.

20.
Arch Virol ; 163(3): 599-607, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29149435

ABSTRACT

Equine herpesvirus type 1 (EHV-1) UL11 is a 74-amino-acid tegument protein encoded by ORF51 of the EHV-1 genome. EHV-1 UL11 was previously reported by other researchers using the RacL22 and RacH strains to be nonessential for viral replication in cultured cells. Here, we constructed UL11 mutant viruses including a UL11 null mutant and three C-terminal truncated mutants, for further characterization of EHV-1 UL11 using bacterial artificial chromosome (BAC) technology based on the neuropathogenic strain Ab4p. EHV-1 Ab4p UL11 was localized to juxtanuclear and Golgi regions as reported by other researchers. We found that no progeny viruses were produced by transfection of fetal equine kidney cells and rabbit kidney (RK-13) cells with the UL11 null mutant and truncation mutant BAC DNAs. However, mutant viruses were generated after transfection of RK13-UL11 cells constitutively expressing EHV-1 UL11 with the mutant BAC DNAs. In conclusion, UL11 of EHV-1 Ab4p is essential for replication in cultured cells.


Subject(s)
Epithelial Cells/virology , Herpesvirus 1, Equid/genetics , Herpesvirus 1, Equid/pathogenicity , Open Reading Frames , Viral Structural Proteins/genetics , Virus Replication , Animals , Base Sequence , Cell Line , Cell Nucleus/ultrastructure , Cell Nucleus/virology , Chromosomes, Artificial, Bacterial/chemistry , Chromosomes, Artificial, Bacterial/metabolism , Epithelial Cells/ultrastructure , Gene Expression , Golgi Apparatus/ultrastructure , Golgi Apparatus/virology , Herpesvirus 1, Equid/growth & development , Herpesvirus 1, Equid/metabolism , Horses , Kidney/cytology , Kidney/virology , Mutation , Rabbits , Viral Structural Proteins/metabolism , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...