Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1214602, 2023.
Article in English | MEDLINE | ID: mdl-37621889

ABSTRACT

Cytochrome P450 monooxygenases (CYPs) are enzymes that play critical roles in the structural diversification of triterpenoids. To perform site-specific oxidations of the triterpene scaffold, CYPs require electrons transferred by NADPH-cytochrome P450 reductase (CPR), which is classified into two main classes, class I and class II, based on their structural difference. Lotus japonicus is a triterpenoids-producing model legume with one CPR class I gene (LjCPR1) and a minimum of two CPR class II genes (LjCPR2-1 and LjCPR2-2). CPR classes I and II from different plants have been reported to be involved in different metabolic pathways. By performing gene expression analyses of L. japonicus hairy root culture treated with methyl jasmonate (MeJA), this study revealed that LjCPR1, CYP716A51, and LUS were down-regulated which resulted in no change in betulinic acid and lupeol content. In contrast, LjCPR2s, bAS, CYP93E1, and CYP72A61 were significantly upregulated by MeJA treatment, followed by a significant increase of the precursors for soyasaponins, i.e. ß-amyrin, 24-OH ß-amyrin, and sophoradiol content. Triterpenoids profile analysis of LORE1 insertion and hairy root mutants showed that the loss of the Ljcpr2-1 gene significantly reduced soyasaponins precursors but not in Ljcpr1 mutants. However, Ljcpr1 and Ljcpr2-1 mutants showed a significant reduction in lupeol and oleanolic, ursolic, and betulinic acid contents. Furthermore, LjCPR1, but not LjCPR2, was crucial for seed development, supporting the previous notion that CPR class I might support plant basal metabolism. This study suggests that CPR classes I and II play different roles in L. japonicus triterpenoid biosynthesis.

2.
Front Bioeng Biotechnol ; 10: 955650, 2022.
Article in English | MEDLINE | ID: mdl-36061436

ABSTRACT

Triterpenoids constitute a group of specialized plant metabolites with wide structural diversity and high therapeutic value for human health. Cytochrome P450 monooxygenases (CYP) are a family of enzymes important for generating the structural diversity of triterpenoids by catalyzing the site-specific oxidization of the triterpene backbone. The CYP716 enzyme family has been isolated from various plant families as triterpenoid oxidases; however, their experimental crystal structures are not yet available and the detailed catalytic mechanism remains elusive. Here, we address this challenge by integrating bioinformatics approaches with data from other CYP families. Medicago truncatula CYP716A12, the first functionally characterized CYP716A subfamily enzyme, was chosen as the model for this study. We performed homology modeling, structural alignment, in silico site-directed mutagenesis, and molecular docking analysis to search and screen key amino acid residues relevant to the catalytic activity and substrate specificity of the CYP716A subfamily enzyme in triterpenoid biosynthesis. An in vivo functional analysis using engineered yeast that endogenously produced plant-derived triterpenes was performed to elucidate the results. When the amino acids in the signature region and substrate recognition sites (SRSs) were substituted, the product profile of CYP716A12 was modified. We identified amino acid residues that control the substrate contraction of the enzyme (D292) and engineered the enzyme to improve its catalytic activity and substrate specificity (D122, I212, and Q358) for triterpenoid biosynthesis. In addition, we demonstrated the versatility of this strategy by changing the properties of key residues in SRSs to improve the catalytic activity of Arabidopsis thaliana CYP716A1 (S356) and CYP716A2 (M206, F210) at C-28 on the triterpene backbone. This research has the potential to help in the production of desired triterpenoids in engineered yeast by increasing the catalytic activity and substrate specificity of plant CYP716A subfamily enzymes.

3.
Front Plant Sci ; 13: 991909, 2022.
Article in English | MEDLINE | ID: mdl-36082301

ABSTRACT

Oleanolic acid is a pentacyclic triterpenoid found in numerous plant species and is a precursor to several bioactive triterpenoids with commercial potential. However, oleanolic acid accumulates at low levels in plants, and its chemical synthesis is challenging. Here, we established a method for producing oleanolic acid in substantial quantities via heterologous expression of pathway enzymes in Nicotiana benthamiana. The "Tsukuba system" is one of the most efficient agroinfiltration-based transient protein expression systems using the vector pBYR2HS, which contains geminiviral replication machinery and a double terminator for boosting expression. Additionally, the pBYR2HS vector contains an expression cassette for the gene-silencing suppressor p19 protein from tomato bushy stunt virus, which can also contribute to enhancing the expression of target proteins. In this study, we evaluated the applicability of this system to heterologous triterpenoid production in N. benthamiana. Medicago truncatula cytochrome P450 monooxygenase (CYP) 716A12 is the first enzyme to be functionally characterized as ß-amyrin C-28 oxidase producing oleanolic acid. A mutant CYP716A12 (D122Q) with improved catalytic activity engineered in our previous study was co-expressed with other enzymes in N. benthamiana leaves. Using pBYR2HS, oleanolic acid yield was increased 13.1-fold compared with that using the conventional binary vector, indicating the advantage of the Tsukuba system. We also demonstrated the efficacy of co-expressing a mutant Arabidopsis thaliana HMGR1 catalytic domain, additional NADPH-cytochrome P450 reductase (CPR) transferring electrons to heterologous CYPs, and application of ascorbic acid for preventing leaf necrosis after agroinfiltration, to improve product yield. As a result, the product yields of both simple (ß-amyrin) and oxidized (oleanolic acid and maslinic acid) triterpenoids were significantly improved compared with the previously reported yield in heterologous triterpenoid production in N. benthamiana leaves.

4.
Front Plant Sci ; 12: 762546, 2021.
Article in English | MEDLINE | ID: mdl-34975947

ABSTRACT

Triterpenoids are plant specialized metabolites with various pharmacological activities. They are widely distributed in higher plants, such as legumes. Because of their low accumulation in plants, there is a need for improving triterpenoid production. Cytochrome P450 monooxygenases (CYPs) play critical roles in the structural diversification of triterpenoids. To perform site-specific oxidations, CYPs require the electrons that are transferred by NADPH-cytochrome P450 reductase (CPR). Plants possess two main CPR classes, class I and class II. CPR classes I and II have been reported to be responsible for primary and specialized (secondary) metabolism, respectively. In this study, we first analyzed the CPR expression level of three legumes species, Medicago truncatula, Lotus japonicus, and Glycyrrhiza uralensis, showing that the expression level of CPR class I was lower and more stable, while that of CPR class II was higher in almost all the samples. We then co-expressed different combinations of CYP716As and CYP72As with different CPR classes from these three legumes in transgenic yeast. We found that CYP716As worked better with CPR-I from the same species, while CYP72As worked better with any CPR-IIs. Using engineered yeast strains, CYP88D6 paired with class II GuCPR produced the highest level of 11-oxo-ß-amyrin, the important precursor of high-value metabolites glycyrrhizin. This study provides insight into co-expressing genes from legumes for heterologous production of triterpenoids in yeast.

5.
Front Plant Sci ; 10: 1520, 2019.
Article in English | MEDLINE | ID: mdl-31850023

ABSTRACT

The triterpenes are structurally diverse group of specialized metabolites with important roles in plant defense and human health. Glycyrrhizin, with a carboxyl group at C-30 of its aglycone moiety, is a valuable triterpene glycoside, the production of which is restricted to legume medicinal plants belonging to the Glycyrrhiza species. Cytochrome P450 monooxygenases (P450s) are important for generating triterpene chemodiversity by catalyzing site-specific oxidation of the triterpene scaffold. CYP72A154 was previously identified from the glycyrrhizin-producing plant Glycyrrhiza uralensis as a C-30 oxidase in glycyrrhizin biosynthesis, but its regioselectivity is rather low. In contrast, CYP72A63 from Medicago truncatula showed superior regioselectivity in C-30 oxidation, improving the production of glycyrrhizin aglycone in engineered yeast. The underlying molecular basis of C-30 product regioselectivity is not well understood. Here, we identified two amino acid residues that control C-30 product regioselectivity and contribute to the chemodiversity of triterpenes accumulated in legumes. Amino acid sequence comparison combined with structural analysis of the protein model identified Leu149 and Leu398 as important amino acid residues for C-30 product regioselectivity. These results were further confirmed by mutagenesis of CYP72A154 homologs from glycyrrhizin-producing species, functional phylogenomics analyses, and comparison of corresponding residues of C-30 oxidase homologs in other legumes. These findings could be combined with metabolic engineering to further enhance the production of high-value triterpene compounds.

6.
J Nat Prod ; 82(12): 3311-3320, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31774676

ABSTRACT

Pentacyclic triterpenes may be active agents and provide a rich natural resource of promising compounds for drug development. The inhibitory activities of 29 natural oleanane and ursane pentacyclic triterpenes were evaluated against four major enzymes involved in the inflammatory process: 5-LOX, 15-LOX-2, COX-1, and COX-2. It was found that 3-O-acetyl-ß-boswellic acid potently inhibited human 15-LOX-2 (IC50 = 12.2 ± 0.47 µM). Analysis of the structure-activity relationships revealed that the presence of a hydroxy group at position 24 was beneficial in terms of both 5-LOX and COX-1 inhibition. Notably, the introduction of a carboxylic acid group at position 30 was important for dual 5-LOX/COX inhibitory activity; furthermore, its combination with a carbonyl group at C-11 considerably increased 5-LOX inhibition. Also, the presence of an α-hydroxy group at C-2 or a carboxylic acid group at C-23 markedly suppressed the 5-LOX activity. The present findings reveal that the types and configurations of polar moieties at positions C-2, -3, -11, -24, and -30 are important structural aspects of pentacyclic triterpenes for their potential as anti-inflammatory lead compounds.


Subject(s)
Cyclooxygenase Inhibitors/pharmacology , Lipoxygenase Inhibitors/pharmacology , Pentacyclic Triterpenes/pharmacology , Cyclooxygenase Inhibitors/chemistry , Drug Evaluation, Preclinical , Humans , Lipoxygenase Inhibitors/chemistry , Pentacyclic Triterpenes/chemistry , Structure-Activity Relationship
7.
Plant Cell Physiol ; 60(11): 2496-2509, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31418782

ABSTRACT

Lotus japonicus is an important model legume plant in several fields of research, such as secondary (specialized) metabolism and symbiotic nodulation. This plant accumulates triterpenoids; however, less information regarding its composition, content and biosynthesis is available compared with Medicago truncatula and Glycine max. In this study, we analyzed the triterpenoid content and composition of L. japonicus. Lotus japonicus accumulated C-28-oxidized triterpenoids (ursolic, betulinic and oleanolic acids) and soyasapogenols (soyasapogenol B, A and E) in a tissue-dependent manner. We identified an oxidosqualene cyclase (OSC) and two cytochrome P450 enzymes (P450s) involved in triterpenoid biosynthesis using a yeast heterologous expression system. OSC9 was the first enzyme derived from L. japonicus that showed α-amyrin (a precursor of ursolic acid)-producing activity. CYP716A51 showed triterpenoid C-28 oxidation activity. LjCYP93E1 converted ß-amyrin into 24-hydroxy-ß-amyrin, a metabolic intermediate of soyasapogenols. The involvement of the identified genes in triterpenoid biosynthesis in L. japonicus plants was evaluated by quantitative real-time PCR analysis. Furthermore, gene loss-of-function analysis of CYP716A51 and LjCYP93E1 was conducted. The cyp716a51-mutant L. japonicus hairy roots generated by the genome-editing technique produced no C-28 oxidized triterpenoids. Likewise, the complete abolition of soyasapogenols and soyasaponin I was observed in mutant plants harboring Lotus retrotransposon 1 (LORE1) in LjCYP93E1. These results indicate that the activities of these P450 enzymes are essential for triterpenoid biosynthesis in L. japonicus. This study increases our understanding of triterpenoid biosynthesis in leguminous plants and provides information that will facilitate further studies of the physiological functions of triterpenoids using L. japonicus.


Subject(s)
Lotus/metabolism , Triterpenes/metabolism , Gene Expression Regulation, Plant , Oleanolic Acid/metabolism , Plant Proteins/metabolism , Ursolic Acid
8.
New Phytol ; 224(1): 352-366, 2019 10.
Article in English | MEDLINE | ID: mdl-31230357

ABSTRACT

Triterpenoids are widely distributed among plants of the legume family. However, most studies have focused on triterpenoids and their biosynthetic enzymes in model legumes. We evaluated the triterpenoid aglycones profile of the medicinal legume tree Bauhinia forficata by gas chromatography-mass spectrometry. Through transcriptome analyses, homology-based cloning, and heterologous expression, we discovered four oxidosqualene cyclases (OSCs) which are responsible for the diversity of triterpenols in B. forficata. We also investigated the effects of the unique motif TLCYCR on α-amyrin synthase activity. B. forficata highly accumulated α-amyrin. We discovered an OSC with a preponderant α-amyrin-producing activity, which accounted for at least 95% of the total triterpenols. We also discovered three other functional OSCs (BfOSC1, BfOSC2, and BfOSC4) that produce ß-amyrin, germanicol, and cycloartenol. Furthermore, by replacing the unique motif TLCYCR from BfOSC3 with the MWCYCR motif, we altered the function of BfOSC3 such that it no longer produced α-amyrin. Our results provide new insights into OSC cyclization, which is responsible for the diversity of triterpenoid metabolites in B. forficata, a non-model legume plant.


Subject(s)
Bauhinia/enzymology , Intramolecular Transferases/metabolism , Pentacyclic Triterpenes/metabolism , Trees/enzymology , Amino Acid Motifs , Amino Acid Sequence , Bauhinia/genetics , Biosynthetic Pathways , Gene Expression Profiling , Gene Expression Regulation, Plant , Intramolecular Transferases/chemistry , Intramolecular Transferases/genetics , Intramolecular Transferases/isolation & purification , Leucine/metabolism , Pentacyclic Triterpenes/chemistry , Phylogeny , Plants, Genetically Modified , Saccharomyces cerevisiae/metabolism , Structure-Activity Relationship , Threonine/metabolism , Nicotiana/genetics , Nicotiana/metabolism
9.
Mar Environ Res ; 145: 177-183, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30797563

ABSTRACT

This study focuses on the possibility that herbicide-exposed phytoplankton will cause sub-lethal effect on zooplankton. Atrazine, phytoplankton Raphidocelis subcapitata and zooplankton Daphnia magna were chosen as a model chemical and organisms. R. subcapitata was exposed to atrazine at 150 µg/L, harvested and fed to D. magna. While the mothers fed with atrazine-exposed phytoplankton did not show any abnormalities, they produced non-viable offspring. Number of non-viable offspring at the first clutch was high but the number was reduced at later stages and viable offspring was produced. This result indicates that phytoplankton exposed to sub-lethal dose of atrazine affects population dynamics of its predator, D. magna.


Subject(s)
Atrazine , Daphnia/drug effects , Water Pollutants, Chemical , Animals , Atrazine/toxicity , Daphnia/physiology , Food Chain , Phytoplankton , Population Dynamics , Water Pollutants, Chemical/toxicity , Zooplankton
10.
Plant Biotechnol (Tokyo) ; 35(2): 131-139, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-31819715

ABSTRACT

Several enzymes of the CYP716A subfamily have been reported to be involved in triterpenoid biosynthesis. Members of this subfamily oxidize various positions along the triterpenoid backbone and the majority of them catalyze a three-step oxidation at the C-28 position. Interestingly, C-28 oxidation is a common feature in oleanolic acid, ursolic acid, and betulinic acid, which are widely distributed in plants and exhibit important biological activities. In this work, three additional CYP716A enzymes isolated from olive, sugar beet, and coffee, were characterized as multifunctional C-28 oxidases. Semi-quantitative comparisons of in vivo catalytic activity were made against the previously characterized enzymes CYP716A12, CYP716A15, and CYP716A52v2. When heterologously expressed in yeast, the isolated enzymes differed in both catalytic activity and substrate specificity. This study indicates that the screening of enzymes from different plants could be a useful means of identifying enzymes with enhanced catalytic activity and desired substrate specificity. Furthermore, we show that "naturally-evolved" enzymes can be useful in the heterologous production of pharmacologically and industrially important triterpenoids.

11.
J Nat Med ; 71(1): 50-58, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27491744

ABSTRACT

We evaluated the hemolytic activity of 41 commercially available triterpenoid saponins and sapogenins derived from three types of structural skeletons. Structure-activity relationships were established by comparing the structural characteristics of both the aglycone and sugar moieties among the tested compounds. The majority of oleanane-type sapogenins had stronger hemolytic effects than those of the ursane and dammarane types. The presence of polar regions on sapogenins, such as a carboxyl (COOH) at position 28, an α-hydroxyl (α-OH) at position 16, and/or a ß-hydroxyl (ß-OH) at position 2, significantly enhanced hemolysis. Meanwhile, the introduction of an α-OH at position 2 or a methyl hydroxyl (CH2OH) at positions 23 or 24 was closely associated with reduced activity. Our findings suggest that not only the complexity of sugar moieties but also the types and stereochemical configurations of functional groups at different positions, as well as the skeleton types, are important structural features affecting hemolytic potential. Our results provide a baseline in terms of the toxicity of saponins and sapogenins to erythrocytes, which holds promise for drug development.


Subject(s)
Sapogenins/pharmacology , Saponins/pharmacology , Triterpenes/pharmacology , Hemolysis , Structure-Activity Relationship
12.
Plant Cell Physiol ; 57(8): 1678-88, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27273626

ABSTRACT

The production of artemisinin, the most effective antimalarial compound, is limited to Artemisia annua. Enzymes involved in artemisinin biosynthesis include amorpha-4,11-diene synthase (ADS), amorpha-4,11-diene 12-monooxygenase (CYP71AV1) and artemisinic aldehyde Δ(11)13 reductase (DBR2). Although artemisinin and its specific intermediates are not detected in other Artemisia species, we reported previously that CYP71AV1 and DBR2 homologs were expressed in some non-artemisinin-producing Artemisia plants. These homologous enzymes showed similar functions to their counterparts in A. annua and can convert fed intermediates into the following products along the artemisinin biosynthesis in planta These findings suggested a partial artemisinin-producing ability in those species. In this study, we examined genes highly homologous to ADS, the first committed gene in the pathway, in 13 Artemisia species. We detected ADS homologs in A. absinthium, A. kurramensis and A. maritima. We analyzed the enzymatic functions of all of the ADS homologs after obtaining their cDNA. We found that the ADS homolog from A. absinthium exhibited novel activity in the cyclization of farnesyl pyrophosphate (FPP) to koidzumiol, a rare natural sesquiterpenoid. Those from A. kurramensis and A. maritima showed similar, but novel, activities in the cyclization of FPP to (+)-α-bisabolol. The unique functions of the novel sesquiterpene synthases highly homologous to ADS found in this study could provide insight into the molecular basis of the exceptional artemisinin-producing ability in A. annua.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Artemisia/enzymology , Fabaceae/enzymology , Mixed Function Oxygenases/metabolism , Oxidoreductases/metabolism , Plant Proteins/metabolism , Alkyl and Aryl Transferases/genetics , Amino Acid Sequence , Antimalarials/chemistry , Antimalarials/metabolism , Artemisia/genetics , Artemisia annua/enzymology , Artemisia annua/genetics , Artemisinins/chemistry , Artemisinins/metabolism , Biosynthetic Pathways , Fabaceae/genetics , Gene Expression Regulation, Plant , Lactones/chemistry , Lactones/metabolism , Mixed Function Oxygenases/genetics , Monocyclic Sesquiterpenes , Oxidoreductases/genetics , Phylogeny , Plant Proteins/genetics , Polycyclic Sesquiterpenes , Polyisoprenyl Phosphates/chemistry , Polyisoprenyl Phosphates/metabolism , Sequence Alignment , Sesquiterpenes/chemistry , Sesquiterpenes/metabolism
13.
J Nat Med ; 70(3): 318-34, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27250562

ABSTRACT

Malaria is a worldwide disease caused by Plasmodium parasites. A sesquiterpene endoperoxide artemisinin isolated from Artemisia annua was discovered and has been accepted for its use in artemisinin-based combinatorial therapies, as the most effective current antimalarial treatment. However, the quantity of this compound produced from the A. annua plant is very low, and the availability of artemisinin is insufficient to treat all infected patients. In addition, the emergence of artemisinin-resistant Plasmodium has been reported recently. Several techniques have been applied to enhance artemisinin availability, and studies related to its mode of action and the mechanism of resistance of malaria-causing parasites are ongoing. In this review, we summarize the application of modern technologies to improve the production of artemisinin, including our ongoing research on artemisinin biosynthetic genes in other Artemisia species. The current understanding of the mode of action of artemisinin as well as the mechanism of resistance against this compound in Plasmodium parasites is also presented. Finally, the current situation of malaria infection and the future direction of antimalarial drug development are discussed.


Subject(s)
Antimalarials/pharmacology , Artemisinins/chemistry , Metabolic Engineering/methods , Parasites/drug effects , Plasmodium/drug effects , Animals , Biotechnology , Humans
14.
Plant J ; 84(3): 478-90, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26333142

ABSTRACT

The ability to evolve novel metabolites has been instrumental for the defence of plants against antagonists. A few species in the Barbarea genus are the only crucifers known to produce saponins, some of which make plants resistant to specialist herbivores, like Plutella xylostella, the diamondback moth. Genetic mapping in Barbarea vulgaris revealed that genes for saponin biosynthesis are not clustered but are located in different linkage groups. Using co-location with quantitative trait loci (QTLs) for resistance, transcriptome and genome sequences, we identified two 2,3-oxidosqualene cyclases that form the major triterpenoid backbones. LUP2 mainly produces lupeol, and is preferentially expressed in insect-susceptible B. vulgaris plants, whereas LUP5 produces ß-amyrin and α-amyrin, and is preferentially expressed in resistant plants; ß-amyrin is the backbone for the resistance-conferring saponins in Barbarea. Two loci for cytochromes P450, predicted to add functional groups to the saponin backbone, were identified: CYP72As co-localized with insect resistance, whereas CYP716As did not. When B. vulgaris sapogenin biosynthesis genes were transiently expressed by CPMV-HT technology in Nicotiana benthamiana, high levels of hydroxylated and carboxylated triterpenoid structures accumulated, including oleanolic acid, which is a precursor of the major resistance-conferring saponins. When the B. vulgaris gene for sapogenin 3-O-glucosylation was co-expressed, the insect deterrent 3-O-oleanolic acid monoglucoside accumulated, as well as triterpene structures with up to six hexoses, demonstrating that N. benthamiana further decorates the monoglucosides. We argue that saponin biosynthesis in the Barbarea genus evolved by a neofunctionalized glucosyl transferase, whereas the difference between resistant and susceptible B. vulgaris chemotypes evolved by different expression of oxidosqualene cyclases (OSCs).


Subject(s)
Barbarea/genetics , Barbarea/metabolism , Saponins/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Plant , Genome, Plant , Herbivory , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/metabolism , Pentacyclic Triterpenes/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Quantitative Trait Loci , Sapogenins/metabolism , Saponins/genetics , Nicotiana/genetics , Triterpenes/metabolism
15.
Methods Mol Biol ; 1153: 235-43, 2014.
Article in English | MEDLINE | ID: mdl-24777802

ABSTRACT

Heterologous expression of plant metabolic enzymes in microorganisms is extensively used for identifying genes involved in their pathways and producing useful compounds. Here, we describe a plasmid-based yeast expression system that easily allows the expression of different triterpene biosynthetic genes in wild-type yeast, providing a useful platform for identifying their functions and facilitating combinatorial biosynthesis of triterpenoids.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Genes, Fungal/genetics , Genetic Engineering/methods , Saccharomyces cerevisiae/genetics , Triterpenes/metabolism , Gene Expression , Genetic Vectors/genetics , Plasmids/genetics , Transformation, Genetic
16.
Biol Pharm Bull ; 35(5): 801-4, 2012.
Article in English | MEDLINE | ID: mdl-22687421

ABSTRACT

CYP51 has been recognized as a unique CYP family that consists of one isolated molecular species, a sterol 14-demethylase essential for sterol biosynthesis. However, another CYP51 gene classified as the CYP51H subfamily has been identified in higher plants, in addition to a sterol 14-demethylase gene, CYP51G1. To shed light on the function of this "second CYP51", oat CYP51H10 was introduced into the ß-amyrin-producing yeast cells, and the effect of the expressed CYP51H10 on ß-amyrin metabolism in the host cells was examined. In the CYP51H10-introduced cells, ß-amyrin was converted to a metabolite with 12,13-epoxy and one additional hydroxyl group. Since the 12,13-epoxy group introduced into ß-amyrin ring is an essential structure of avenacin A-1, a triterpene glycoside produced in oat from ß-amyrin, the present findings indicate the contribution of CYP51H10 to avenacin A-1 biosynthesis from ß-amyrin. This is the first study showing a second function of the CYP51 family.


Subject(s)
Avena/genetics , Genes, Plant , Oleanolic Acid/analogs & derivatives , Saponins/biosynthesis , Sterol 14-Demethylase/genetics , Avena/enzymology , Oleanolic Acid/metabolism , Phytosterols/biosynthesis , Sterol 14-Demethylase/metabolism , Yeasts/genetics , Yeasts/metabolism
17.
Plant Cell ; 23(11): 4112-23, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22128119

ABSTRACT

Glycyrrhizin, a triterpenoid saponin derived from the underground parts of Glycyrrhiza plants (licorice), has several pharmacological activities and is also used worldwide as a natural sweetener. The biosynthesis of glycyrrhizin involves the initial cyclization of 2,3-oxidosqualene to the triterpene skeleton ß-amyrin, followed by a series of oxidative reactions at positions C-11 and C-30, and glycosyl transfers to the C-3 hydroxyl group. We previously reported the identification of a cytochrome P450 monooxygenase (P450) gene encoding ß-amyrin 11-oxidase (CYP88D6) as the initial P450 gene in glycyrrhizin biosynthesis. In this study, a second relevant P450 (CYP72A154) was identified and shown to be responsible for C-30 oxidation in the glycyrrhizin pathway. CYP72A154 expressed in an engineered yeast strain that endogenously produces 11-oxo-ß-amyrin (a possible biosynthetic intermediate between ß-amyrin and glycyrrhizin) catalyzed three sequential oxidation steps at C-30 of 11-oxo-ß-amyrin supplied in situ to produce glycyrrhetinic acid, a glycyrrhizin aglycone. Furthermore, CYP72A63 of Medicago truncatula, which has high sequence similarity to CYP72A154, was able to catalyze C-30 oxidation of ß-amyrin. These results reveal a function of CYP72A subfamily proteins as triterpene-oxidizing enzymes and provide a genetic tool for engineering the production of glycyrrhizin.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Glycyrrhiza/genetics , Glycyrrhiza/metabolism , Glycyrrhizic Acid/metabolism , Triterpenes/metabolism , Cytochrome P-450 Enzyme System/genetics , Glycyrrhetinic Acid/metabolism , Medicago truncatula/enzymology , Molecular Sequence Data , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/metabolism , Yeasts/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...