Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Sci J ; 95(1): e13958, 2024.
Article in English | MEDLINE | ID: mdl-38797864

ABSTRACT

The present study aimed to genetically improve growth performance under high-heat environments by specifically designing a reaction-norm animal model (RNAM) for purebred Duroc pigs in Japan. A total of 54,750 records of average daily gain (ADG) measured for pigs reared at four farms in different prefectures were analyzed. Estimated maximum daily temperatures at the respective farm locations were used to calculate the average cumulative thermal load (TL). The TL values served as an indicator of high-heat environments for pigs. The plausible cumulative period length and threshold temperature for calculating TL were determined to be 8 weeks until just before shipping and 25°C, respectively. Variance components were estimated via RNAM analysis using TL as a linear covariate. The estimated additive genetic variances under both responsive and non-responsive to TL were found to be significant. Moreover, the estimated heritability of ADG ranged from 0.38 to 0.73 for TL values of 0-8. These results suggest that the RNAM developed holds the potential for improving the genetic ability of growth under high-heat environments in pigs.


Subject(s)
Hot Temperature , Models, Animal , Thermotolerance , Weight Gain , Animals , Swine/genetics , Swine/growth & development , Thermotolerance/genetics , Weight Gain/genetics , Hot Temperature/adverse effects , Japan , Male , Female
2.
J Anim Breed Genet ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738451

ABSTRACT

We performed a plateau-linear reaction norm model (RNM) analysis of number born alive (NBA) in purebred Landrace pigs, where breeding value changes according to maximum temperature at mating day, using public meteorological observation data in Japan. We analysed 52,668 NBA records obtained from 10,320 Landrace sows. Pedigree data contained 99,201 animals. Off-farm daily temperature data at the nearest weather station from each of the farms were downloaded from the Japan Meteorological Agency website. A plateau-linear RNM analysis based on daily maximum temperature on mating day (threshold temperature of 16.6°C) was performed. The percentage of the records with daily maximum temperatures at mating days of ≤16.6, ≥25.0, ≥30.0 and ≥35.0°C were 34.3%, 33.6%, 14.0% and 0.8%, respectively. The value of Akaike's information criterion for the plateau-linear RNM was lower than that for a simple repeatability model (RM). With the plateau-linear RNM, estimated value of heritability ranged from 0.14 to 0.15, while that from the RM analysis was 0.15. Additive genetic correlation between intercept and slope terms was estimated to be -0.52 from the plateau-linear RNM analysis. Estimated additive genetic correlations were >0.9 between NBA at different temperatures ranging from 16.6 to 37.6°C. For the 10,320 sows, average values of prediction reliability of the intercept and slope terms for breeding values in the plateau-linear RNM were 0.47 and 0.16, respectively. Increasing weight for slope term in linear selection index could bring positive genetic gain in the slope part, but prediction accuracy would decrease. Our results imply that genetically improving heat tolerance in sows reared in Japan focusing on NBA using RNM is possible, while RNM is more complex to implement and interpret. Therefore, further study should be encouraged to make genetic improvement for heat tolerance in sows more efficient.

3.
Anim Sci J ; 94(1): e13902, 2023.
Article in English | MEDLINE | ID: mdl-38100629

ABSTRACT

The objective of this study was to devise an optimal method for estimating air temperatures outside pig farms to be able to evaluate the genetic performance of pigs. Using daily temperature data from Japan Meteorological Agency meteorological stations, we investigated the optimal number of observation weather stations (number of records), and methods of estimating outside temperature when temperature records are missing. We also considered the possibility of using relative humidity data. Our results showed that it is possible to use records from the three nearest weather stations to estimate off-farm ambient temperatures. We also concluded that estimates of outside temperatures when records are missing can be made by using data from at least one weather station that holds a full set of data. The correlation coefficients between the true THI (temperature-humidity index) and the estimated THI and the average daily temperature were almost the same, indicating that the daily average temperature can be used instead of estimated THI.


Subject(s)
Hot Temperature , Weather , Animals , Swine , Humidity , Temperature , Farms , Japan
4.
Anim Sci J ; 94(1): e13883, 2023.
Article in English | MEDLINE | ID: mdl-37909231

ABSTRACT

We collected 3180 records of oleic acid (C18:1) and monounsaturated fatty acid (MUFA) measured using gas chromatography (GC) and 6960 records of C18:1 and MUFA measured using near-infrared spectroscopy (NIRS) in intermuscular fat samples of Japanese Black cattle. We compared genomic prediction performance for four linear models (genomic best linear unbiased prediction [GBLUP], kinship-adjusted multiple loci [KAML], BayesC, and BayesLASSO) and five machine learning models (Gaussian kernel [GK], deep kernel [DK], random forest [RF], extreme gradient boost [XGB], and convolutional neural network [CNN]). For GC-based C18:1 and MUFA, KAML showed the highest accuracies, followed by BayesC, XGB, DK, GK, and BayesLASSO, with more than 6% gain of accuracy by KAML over GBLUP. Meanwhile, DK had the highest prediction accuracy for NIRS-based C18:1 and MUFA, but the difference in accuracies between DK and KAML was slight. For all traits, accuracies of RF and CNN were lower than those of GBLUP. The KAML extends GBLUP methods, of which marker effects are weighted, and involves only additive genetic effects; whereas machine learning methods capture non-additive genetic effects. Thus, KAML is the most suitable method for breeding of fatty acid composition in Japanese Black cattle.


Subject(s)
Fatty Acids , Genome , Cattle/genetics , Animals , Genomics/methods , Phenotype , Machine Learning , Fatty Acids, Monounsaturated , Models, Genetic , Genotype , Polymorphism, Single Nucleotide
5.
BMC Genomics ; 24(1): 376, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37403068

ABSTRACT

BACKGROUND: Pedigree-based inbreeding coefficients have been generally included in statistical models for genetic evaluation of Japanese Black cattle. The use of genomic data is expected to provide precise assessment of inbreeding level and depression. Recently, many measures have been used for genome-based inbreeding coefficients; however, with no consensus on which is the most appropriate. Therefore, we compared the pedigree- ([Formula: see text]) and multiple genome-based inbreeding coefficients, which were calculated from the genomic relationship matrix with observed allele frequencies ([Formula: see text]), correlation between uniting gametes ([Formula: see text]), the observed vs expected number of homozygous genotypes ([Formula: see text]), runs of homozygosity (ROH) segments ([Formula: see text]) and heterozygosity by descent segments ([Formula: see text]). We quantified inbreeding depression from estimating regression coefficients of inbreeding coefficients on three reproductive traits: age at first calving (AFC), calving difficulty (CD) and gestation length (GL) in Japanese Black cattle. RESULTS: The highest correlations with [Formula: see text] were for [Formula: see text] (0.86) and [Formula: see text] (0.85) whereas [Formula: see text] and [Formula: see text] provided weak correlations with [Formula: see text], with range 0.33-0.55. Except for [Formula: see text] and [Formula: see text], there were strong correlations among genome-based inbreeding coefficients ([Formula: see text] 0.94). The estimates of regression coefficients of inbreeding depression for [Formula: see text] was 2.1 for AFC, 0.63 for CD and -1.21 for GL, respectively, but [Formula: see text] had no significant effects on all traits. Genome-based inbreeding coefficients provided larger effects on all reproductive traits than [Formula: see text]. In particular, for CD, all estimated regression coefficients for genome-based inbreeding coefficients were significant, and for GL, that for [Formula: see text] had a significant.. Although there were no significant effects when using overall genome-level inbreeding coefficients for AFC and GL, [Formula: see text] provided significant effects at chromosomal level in four chromosomes for AFC, three chromosomes for CD, and two chromosomes for GL. In addition, similar results were obtained for [Formula: see text]. CONCLUSIONS: Genome-based inbreeding coefficients can capture more phenotypic variation than [Formula: see text]. In particular, [Formula: see text] and [Formula: see text] can be considered good estimators for quantifying inbreeding level and identifying inbreeding depression at the chromosome level. These findings might improve the quantification of inbreeding and breeding programs using genome-based inbreeding coefficients.


Subject(s)
Inbreeding Depression , Inbreeding , Animals , Cattle/genetics , Pedigree , Polymorphism, Single Nucleotide , Genotype , Genomics/methods , Homozygote
6.
Anim Sci J ; 94(1): e13850, 2023.
Article in English | MEDLINE | ID: mdl-37443446

ABSTRACT

We examined the prediction accuracies of genomic best linear unbiased prediction (GBLUP), various weighted GBLUP according to the degrees of marker effects (WGBLUP) and machine learning (ML) methods, and compared them with traditional BLUP for age at first calving (AFC), calving difficulty (CD), and gestation length in Japanese Black cattle. For WGBLUP, firstly, BayesC and FarmCPU were used to estimate marker effects. Then, we constructed three weighted genomic relationship matrices from information of estimated marker effects in the first step: absolute value of the estimated marker-effect WGBLUP, estimated marker-variance WGBLUP, and genomic-feature WGBLUP. For ML, we applied Gaussian kernel, random forest, extreme gradient boost, and support vector regression. We collected a total of 2583 animals having both phenotypic records and genotypes with 30,105 markers and 16,406 pedigree records. For AFC, prediction accuracies of WGBLUP methods using FarmCPU exceeded BLUP by 25.7%-39.5%. For CD, estimated marker-variance WGBLUP using BayesC achieved the highest prediction accuracy. Among ML methods, extreme gradient boost, support vector regression, and Gaussian kernel increased prediction accuracies by 28.4%, 19.0%, and 36.4% for AFC, CD, and gestation length compared with BLUP, respectively. Thus, prediction performance could be improved using suitable WGBLUP and ML methods according to target reproductive traits for the population used.


Subject(s)
Models, Genetic , Polymorphism, Single Nucleotide , Cattle/genetics , Animals , Polymorphism, Single Nucleotide/genetics , Genome , Genomics/methods , Phenotype , Genotype , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...