Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 60(4): 2425-34, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26856830

ABSTRACT

Arylimidamides (AIAs) have been shown to have considerable biological activity against intracellular pathogens, includingTrypanosoma cruzi, which causes Chagas disease. In the present study, the activities of 12 novel bis-AIAs and 2 mono-AIAs against different strains ofT. cruziin vitroandin vivowere analyzed. The most active wasm-terphenyl bis-AIA (35DAP073), which had a 50% effective concentration (EC50) of 0.5 µM for trypomastigotes (Y strain), which made it 26-fold more effective than benznidazole (Bz; 13 µM). It was also active against the Colombiana strain (EC50= 3.8 µM). Analysis of the activity against intracellular forms of the Tulahuen strain showed that this bis-AIA (EC50= 0.04 µM) was about 100-fold more active than Bz (2 µM). The trypanocidal effect was dissociated from the ability to trigger intracellular lipid bodies within host cells, detected by oil red labeling. Both an active compound (35DAP073) and an inactive compound (26SMB060) displayed similar activation profiles. Due to their high selectivity indexes, two AIAs (35DAP073 and 35DAP081) were moved toin vivostudies, but because of the results of acute toxicity assays, 35DAP081 was excluded from the subsequent tests. The findings obtained with 35DAP073 treatment of infections caused by the Y strain revealed that 2 days of therapy induced a dose-dependent action, leading to 96 to 46% reductions in the level of parasitemia. However, the administration of 10 daily doses in animals infected with the Colombiana strain resulted in toxicity, preventing longer periods of treatment. The activity of the combination of 0.5 mg/kg of body weight/day 35DAP073 with 100 mg/kg/day Bz for 10 consecutive days was then assayed. Treatment with the combination resulted in the suppression of parasitemia, the elimination of neurological toxic effects, and survival of 100% of the animals. Quantitative PCR showed a considerable reduction in the parasite load (60%) compared to that achieved with Bz or the amidine alone. Our results support further investigations of this class with the aim of developing novel alternatives for the treatment of Chagas disease.


Subject(s)
Amides/pharmacology , Chagas Disease/drug therapy , Parasitemia/drug therapy , Terphenyl Compounds/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Amides/chemical synthesis , Amidines/pharmacology , Animals , Chagas Disease/mortality , Chagas Disease/parasitology , Disease Models, Animal , Drug Administration Schedule , Drug Dosage Calculations , Drug Synergism , Drug Therapy, Combination , Female , Mice , Nitroimidazoles/pharmacology , Parasite Load , Parasitemia/mortality , Parasitemia/parasitology , Parasitic Sensitivity Tests , Structure-Activity Relationship , Survival Analysis , Terphenyl Compounds/chemical synthesis , Trypanocidal Agents/chemical synthesis , Trypanosoma cruzi/growth & development
2.
Br J Dermatol ; 157(2): 273-83, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17553031

ABSTRACT

BACKGROUND: Leprosy is characterized by a disease spectrum having two polar clinical forms dependent on the presence or not of cell-mediated immunity. In the tuberculoid forms, granuloma-activated macrophages kill Mycobacterium leprae in conjunction with a Th1 response while, in multibacillary (MB) lesions, M. leprae nonactivated macrophages infiltrate the nerves and internal organs together with a Th2 response. The functional properties and activation pathways of macrophages isolated from patients with MB leprosy remain only partially understood. OBJECTIVES: To establish an ex vivo methodology capable of evaluating the activation pathways, grade and fate of cultured macrophages isolated from MB lesions. METHODS: Skin biopsies from patients with borderline tuberculoid, bordeline lepromatous and lepromatous leprosy (LL) were characterized by immunohistochemistry and transcriptional analysis. To isolate inflammatory cells, a portion of the samples was submitted to enzymatic digestion. These same cells, maintained in culture for a minimum 7-day period, were characterized morphologically and via flow cytometry at different culture time points. Cytokine [interferon (IFN)-gamma, tumour necrosis factor (TNF)-alpha and interleukin (IL)-10] mRNA levels were quantified by real-time polymerase chain reaction and protein secretion in the culture supernatants was measured by enzyme-linked immunosorbent assay and the nitric oxide levels by Griess reagent. RESULTS: RNA expression in tuberculoid and MB lesions showed the profile expected of characteristic Th1 and Th2 responses, respectively. The inflammatory cells in all biopsies were successfully isolated. Although the number of cells varied between biopsies, it was highest in LL biopsies. The frequency of isolated CD14+ and CD3+ cells measured by flow cytometry correlated with the percentages of macrophages and lymphocytes in the lesions. Throughout the culture period, CD68+ macrophages showed morphological changes. A progressive increase in cell number and reduction of infected cells were perceptible in the cultures. In contrast to the biopsies, TNF-alpha, IFN-gamma and IL-10 expression in the tuberculoid and MB leprosy cells in 24-h culture and the cytokine levels in the supernatants did not differ significantly. During the culture period, cytokine expression in the MB cells progressively declined, whereas, from days 1 to 7, nitrite levels progressively increased. After day 40, the remaining macrophages were able to ingest fluorescein isothiocyanate-labelled M. leprae. These data need to be confirmed. CONCLUSIONS: This study confirmed the feasibility of obtaining ex vivo macrophages from leprosy lesions and keeping them in long-term culture. This procedure may open new pathways to studying the interaction between M. leprae and human macrophages, which might, in turn, lead to the development of therapeutic tools capable of overcoming the specific anergy found in patients with MB leprosy.


Subject(s)
Leprosy/immunology , Macrophages/immunology , Mycobacterium leprae/physiology , Skin/immunology , Adult , Aged , Cell Count , Cells, Cultured , Cytokines/biosynthesis , Cytokines/genetics , Feasibility Studies , Female , Gene Expression , Humans , Leprosy, Borderline/immunology , Leprosy, Lepromatous/immunology , Leprosy, Tuberculoid/immunology , Macrophages/parasitology , Male , Middle Aged , Models, Biological , Nitrites/metabolism , Phagocytosis/immunology , RNA, Messenger/genetics , Skin/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...