Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 21(16)2020 Aug 09.
Article in English | MEDLINE | ID: mdl-32784909

ABSTRACT

Autophagy is a membrane traffic system that provides sustainable degradation of cellular components for homeostasis, and is thus considered to promote health and longevity, though its activity declines with aging. The present findings show deterioration of autophagy in association with premature skin aging. Autophagy flux was successfully determined in skin tissues, which demonstrated significantly decreased autophagy in hyperpigmented skin such as that seen in senile lentigo. Furthermore, an exacerbated decline in autophagy was confirmed in xerotic hyperpigmentation areas, accompanied by severe dehydration and a barrier defect, which showed correlations with skin physiological conditions. The enhancement of autophagy in skin ex vivo ameliorated skin integrity, including pigmentation and epidermal differentiation. The present results indicate that the restoration of autophagy can contribute to improving premature skin aging by various intrinsic and extrinsic factors via the normalization of protein homeostasis.


Subject(s)
Autophagy/physiology , Cell Differentiation/physiology , Epidermis/physiology , Skin Aging/physiology , Skin Pigmentation/physiology , Skin/physiopathology , Adult , Aging, Premature/metabolism , Aging, Premature/physiopathology , Autophagy/genetics , Cell Differentiation/genetics , Cell Line , Epidermis/metabolism , Female , Gene Expression Regulation , Humans , Keratinocytes/cytology , Keratinocytes/physiology , Lentigo/genetics , Lentigo/metabolism , Lentigo/physiopathology , Male , Middle Aged , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , S-Phase Kinase-Associated Proteins/genetics , S-Phase Kinase-Associated Proteins/metabolism , Skin/metabolism , Skin Aging/genetics , Skin Pigmentation/genetics
2.
J Invest Dermatol ; 136(8): 1681-1691, 2016 08.
Article in English | MEDLINE | ID: mdl-27094592

ABSTRACT

The wide range in human skin color results from varying levels of the pigment melanin. Genetic mechanisms underlying coloration differences have been explored, but identified genes do not account for all variation seen in the skin color spectrum. Post-transcriptional and post-translational regulation of factors that determine skin color, including melanin synthesis in epidermal melanocytes, melanosome transfer to keratinocytes, and melanosome degradation, is also critical for pigmentation. We therefore investigated proteins that are differentially expressed in melanocytes derived from either white or African American skin. Two-dimensional gel electrophoresis and mass spectrometry demonstrated that heat shock protein 70-1A (Hsp70-1A) protein levels were significantly higher in African American melanocytes compared with white melanocytes. Hsp70-1A expression significantly correlated with levels of tyrosinase, the rate-limiting melanogenic enzyme, consistent with a proposed role for Hsp70 family members in tyrosinase post-translational modification. In addition, pharmacologic inhibition and small interfering RNA-mediated downregulation of Hsp70-1A correlated with pigmentation changes in cultured melanocytes, modified human skin substitutes, and ex vivo skin. Furthermore, Hsp70-1A inhibition led to increased autophagy-mediated melanosome degradation in keratinocytes. Our data thus reveal that epidermal Hsp70-1A contributes to the diversity of skin color by regulating the amount of melanin synthesized in melanocytes and modulating autophagic melanosome degradation in keratinocytes.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Skin Pigmentation , Skin/metabolism , Black or African American , Electrophoresis, Gel, Two-Dimensional , Epidermis/metabolism , Female , Gene Expression Profiling , Genetic Variation , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Mass Spectrometry , Melanocytes/cytology , Melanosomes/metabolism , Phenotype , Pigmentation/physiology , Protein Processing, Post-Translational , RNA Processing, Post-Transcriptional
3.
Biol Open ; 4(10): 1213-21, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-26340945

ABSTRACT

Skin hyperpigmentation is characterized by increased melanin synthesis and deposition that can cause significant psychosocial and psychological distress. Although several cytokine-receptor signaling cascades contribute to the formation of ultraviolet B-induced cutaneous hyperpigmentation, their possible involvement in other types of skin hyperpigmentation has never been clearly addressed. Since our continuous studies using skin specimens from more than 30 subjects with ethnic skin diversity emphasized a consistent augmentation in the expression of endothelin-1 (ET-1) and its receptor (Endothelin B receptor, ET-B) in hyperpigmented lesions, including senile lentigos (SLs), the precise function of ET-1 signaling was investigated in the present study. In line with previous studies, ET-1 significantly induced melanogenesis followed by increases in melanosome transport in melanocytes and in its transfer to keratinocytes while inhibition of ET-B function substantially depressed melanogenic ability in tissue-cultured SLs. Additionally, in agreement with a previous report that the formation of autophagosomes rather than melanosomes is stimulated according to starvation or defective melanosome production, ET-1 was found to remarkably augment the expression of components necessary for early melanosome formation, indicating its counteraction against autophagy-targeting melanosome degradation in melanocytes. Despite the lack of substantial impact of ET-1 on keratinocyte melanogenic functions, the expression of ET-1 was enhanced following melanosome uptake by keratinocytes. Taken together, our data suggest that ET-1 plays a substantial role in the development and/or maintenance of skin hyperpigmentation in reciprocal cooperation with increased melanosome incorporation.

SELECTION OF CITATIONS
SEARCH DETAIL
...