Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 11(1): 200, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351049

ABSTRACT

Winter cover crop performance metrics (i.e., vegetative biomass quantity and quality) affect ecosystem services provisions, but they vary widely due to differences in agronomic practices, soil properties, and climate. Cereal rye (Secale cereale) is the most common winter cover crop in the United States due to its winter hardiness, low seed cost, and high biomass production. We compiled data on cereal rye winter cover crop performance metrics, agronomic practices, and soil properties across the eastern half of the United States. The dataset includes a total of 5,695 cereal rye biomass observations across 208 site-years between 2001-2022 and encompasses a wide range of agronomic, soils, and climate conditions. Cereal rye biomass values had a mean of 3,428 kg ha-1, a median of 2,458 kg ha-1, and a standard deviation of 3,163 kg ha-1. The data can be used for empirical analyses, to calibrate, validate, and evaluate process-based models, and to develop decision support tools for management and policy decisions.


Subject(s)
Edible Grain , Secale , Agriculture , Ecosystem , Edible Grain/growth & development , Seasons , Secale/growth & development , Soil , United States
2.
Sci Total Environ ; 821: 153359, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35081409

ABSTRACT

Soil microbes play key roles in ecosystem functioning through processes such as organic matter decomposition, nutrient and carbon cycling, and regulating vegetation structure and productivity. Coastal marshes are situated at the confluence of terrestrial and marine ecosystems; thus, their soils support abundant and diverse microbiota which facilitate globally important biogeochemical processes including nutrient cycling and greenhouse gas fluxes. With coastal marsh ecosystems threatened by relative sea level rise, subsidence, and development, mitigation for the loss of marshes is becoming commonplace. Despite the widespread implementation of marsh construction projects, little is known about the development and variability of microbial communities in created marshes. For this study, we tested the hypothesis that microbial community composition differs across created marshes of different ages and between created and natural marshes. We also hypothesized that the microbial community would be correlated with soil properties including soil organic carbon and nitrogen content, which were predicted to increase with marsh age. To test these hypotheses, we determined dominant microbial groups and environmental characteristics from six constructed marshes ranging in age from 0 to 32 years old, as well as an adjacent natural marsh. Our results revealed that microbial biomass estimates increased with marsh age except for the high elevation 20-year old marsh, yet each marsh contained a distinct microbial community composition. Across marshes, microbial community composition was significantly related to soil C:N ratio with an increase in total microbial abundance and actinomycetes and GM+ bacteria with an increase in soil C to N ratio. Additionally, shifts in dominant microbial groups were associated with differences in vegetation, elevation, and marsh age. The natural marsh community grouped more closely with younger rather than older marshes suggesting age is less important than environmental conditions. This study shows that microbial communities are not homogenized across restoration sites and do not necessarily converge to be similar to natural marshes over time. Local biotic and environmental conditions were correlated with microbial compositions, yet in seemingly similar conditions, microbial groups also differed. The effect of differences in microbial compositions on ecological functions are yet to be fully understood.


Subject(s)
Microbiota , Wetlands , Carbon , Ecosystem , Soil/chemistry , Time Factors
3.
Chemosphere ; 270: 128625, 2021 May.
Article in English | MEDLINE | ID: mdl-33077185

ABSTRACT

Biochar as a soil amendment has been proposed for enhancing carbon sequestration and manure-borne hormone contaminant remediation. However, little is known about the ecological risk of biochar application in the soil with hormone contamination. This study investigated the influence of biochar in three manure-impacted soils contaminated with estrogen hormones, natural estrogen 17ß-estradiol and synthesized estrogen 17α-ethinylestradiol in a microcosm experiment. Specifically, microbial respiration was periodically determined during microcosm incubation while microbial community phospholipid fatty acids and activities of nutrient (C, N, P, S) cycling related enzymes (ß-glucosidase, urease, phosphodiesterase, arylsulfatase) were characterized after the incubation. Results showed that the manure-impacted soils with high SOC generally had greater total microbial biomass, ratios of fungi/bacteria and Gram-positive bacteria/Gram-negative bacteria, and phosphodiesterase activity, but lower urease activity. Additionally, hormones stimulated microbial respiration and biomass, while had little impact on activity of the enzymes. On the other hand, biochar showed negative priming effect by significantly decreasing total microbial biomass by 8.7%-26.4%, CO2 production by 16.6%-33.5%, and glucosidase activity by 27.1%-41.0% in the three soils. Biochar significantly increased the activity of phosphodiesterase, showed no impact on arylsulfatase, while decreased the activity of urease. Overall, the study suggests that when used in hormone remediation in manure-impact soils, biochar could improve phosphodiesterase activity, but may decrease soil microbial activity and the activity of soil glucosidase and urease.


Subject(s)
Microbiota , Soil , Charcoal , Estrogens , Manure , Respiration , Soil Microbiology
4.
J Hazard Mater ; 396: 122595, 2020 09 05.
Article in English | MEDLINE | ID: mdl-32298868

ABSTRACT

Decontamination of oil spills from coastal wetland soils requires a delicate approach. A microcosm study was carried out to investigate the impact of integrated application of biochar, rhamnolipid (RL) biosurfactant and nitrogen (N) on petroleum hydrocarbon remediation in a Louisiana coastal saline marsh and their impact on soil microbial community. The soil was artificially contaminated with crude oil and subjected to treatments of different combinations of sugarcane residue biochar, RL, and coated urea. Total petroleum hydrocarbons (TPH) in the contaminated soil were analyzed periodically using gas chromatograph and associated soil bacterial community was studied using 16 s rRNA sequencing technologies. Results showed that integrated application of biochar + RL, biochar + N, and biochar + N+RL reduced 32.3%, 73.2%, 80.9% of TPH, respectively, and exhibited synergic interaction with higher efficiency than application individually. Combined treatments showed distinct functions that biochar increased the sorption of aromatic compounds, while RL and N enhanced the degradation of heavy and light aliphatic compounds. All remediation treatments caused reduction of soil bacterial diversity while RL and N shifted the microbial community to higher abundances of Proteobacteria and Bacteroidetes, respectively. Overall, the findings of this study demonstrate the positivity of applying integrated biochar, biosurfactant, and N treatment in oil remediation in wetland soils.


Subject(s)
Petroleum , Soil Pollutants , Biodegradation, Environmental , Charcoal , Glycolipids , Hydrocarbons , Nitrogen/analysis , Soil , Soil Microbiology , Soil Pollutants/analysis , Wetlands
5.
Chemosphere ; 253: 126617, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32278905

ABSTRACT

Remediation of wetland soils contaminated with petroleum hydrocarbons is a challenging task. Biosurfactant and biochar have been used in oil remediation. However, little is known about the ecotoxicity of these materials when applied in wetland ecosystems. In this study, the ecotoxicity of biochar and rhamnolipid (RL) biosurfactant as crude oil remediation strategies in a Louisiana wetland soil was investigated. A pot experiment was set up with wetland soil treated with/without crude oil followed by subjecting to application of 1% biochar and various levels of RL ranging from 0.1% to 1.4%. The ecotoxicity was evaluated regarding to high plant (S. Alterniflora), algae, and soil microbes. Specifically, after a 30-day growth in a controlled chamber, plant biomass change as well as shoot/root ratio was measured. Algae growth was estimated by quantifying chlorophyll by spectrometry following separation, and soil microbial community was characterized by phospholipid fatty acids analysis. Results showed that plant can tolerate RL level up to 0.8%, while algae growth was strongly inhibited at RL > 0.1%. Algal biomass was significantly increased by biochar, which offset the negative impact of oil and RL. Additionally, soil microbial community shift caused by crude oil and RL was alleviated by biochar with promoting Gram-positive bacteria, actinomycetes, and arbuscular mycorrhizal fungi. Overall, this study shows that integrated treatment of biochar and RL has the lowest ecotoxicity to plant and algae when used in oil remediation of contaminated wetland soils.


Subject(s)
Charcoal/chemistry , Environmental Restoration and Remediation/methods , Glycolipids/chemistry , Petroleum/toxicity , Soil Pollutants/toxicity , Wetlands , Biodegradation, Environmental , Biomass , Ecosystem , Hydrocarbons , Louisiana , Mycorrhizae , Petroleum/analysis , Soil/chemistry , Soil Microbiology , Soil Pollutants/analysis , Soil Pollutants/chemistry
6.
Sci Total Environ ; 709: 136158, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-31887499

ABSTRACT

Recent studies have shown the effect of nitrate (NO3-) on carbon gas emissions from wetland soils that contradict thermodynamic predictions. In this study, CO2 production in three Mississippi River deltaic plain wetland soils (forest swamp, freshwater and saline marshes) with the presence of different NO3- levels (0.2, 2.0, and 3.2 mM) was evaluated in an anaerobic microcosm. Molecular composition of dissolved organic matter (DOM) of these soils was investigated using pyrolysis-GC/MS, and soil microbial community was characterized based on phosphorus lipid fatty acid (PLFA) method to elucidate the underlying mechanisms. Addition of NO3- promoted CO2 production in swamp forest soil, but inhibited CO2 emission from marsh soils. Pyrolysis-GC/MS analysis showed that swamp soil contained more polysaccharides, whereas both marsh soils had high abundance of phenolic compounds. Total PLFAs of forest swamp soil were 34% and 66% higher than freshwater and saline marsh soils, respectively. The PLFA profiles indicated different microbial distribution along a salinity gradient with the forest swamp having a higher proportion of fungi and NO3- reducers but lower sulfate (SO42-) reducers than marsh soils. Overall, the study indicated that the inherent differences in soil DOM and microbial community led to the contrasting response in soil CO2 respiration between forest swamp and marsh ecosystems to NO3- loading. These differences should be considered in determining the fate of nitrate entering Louisiana coastal wetlands from river diversions and other sources and their management.

SELECTION OF CITATIONS
SEARCH DETAIL
...