Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(32): 28378-28387, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35990454

ABSTRACT

Peptidylarginine deiminases (PADs) are enzymes that catalyze the Ca2+-dependent conversion of arginine residues into proteins to citrulline residues. Five PAD isozymes have been identified in mammals. Several studies have shown that the active-site pockets of these isozymes are formed when Ca2+ ions are properly bound. We previously characterized the structures of PAD3 in six states. Among these, we identified a "nonproductive" form of PAD3 in which the active site was disordered even though five Ca2+ ions were bound. This strange structure was probably obtained as a result of either high Ca2+ concentration (∼260 mM)-induced denaturation during the crystallization process or high Ca2+-concentration-induced autocitrullination. While autocitrullination has been reported in PAD2 and PAD4 for some time, only a single report on PAD3 has been published recently. In this study, we investigated whether PAD3 catalyzes the autocitrullination reaction and identified autocitrullination sites. In addition to the capacity of PAD3 for autocitrullination, the autocitrullination sites increased depending on the Ca2+ concentration and reaction time. These findings suggest that some of the arginine residues in the "nonproductive" form of PAD3 would be autocitrullinated. Furthermore, most of the autocitrullinated sites in PAD3 were located near the substrate-binding site. Given the high Ca2+ concentration in the crystallization condition, it is likely that Arg372 was citrullinated in the "nonproductive" PAD3 structure, the structure was slightly altered from the active form by citrulline residues, and probably inhibited Ca2+-ion binding at the proper position. Following Arg372 citrullination, PAD3 enters an inactive form; however, the Arg372-citrullinated PAD3 are considered minor components in autocitrullinated PAD3 (CitPAD3), and CitPAD3 does not significantly decrease the enzyme activity. Autocitrullination of PAD3 could not be confirmed at the low Ca2+ concentrations seen in vivo. Future experiments using cells and animals are needed to verify the effect of Ca2+ on the PAD3 structure and functions in vivo.

2.
Arch Biochem Biophys ; 708: 108911, 2021 09 15.
Article in English | MEDLINE | ID: mdl-33971157

ABSTRACT

Peptidylarginine deiminase type III (PAD3) is an isozyme belonging to the PAD enzyme family that converts arginine to citrulline residue(s) within proteins. PAD3 is expressed in most differentiated keratinocytes of the epidermis and hair follicles, while S100A3, trichohyalin, and filaggrin are its principal substrates. In this study, the X-ray crystal structures of PAD3 in six states, including its complex with the PAD inhibitor Cl-amidine, were determined. This structural analysis identified a large space around Gly374 in the PAD3-Ca2+-Cl-amidine complex, which may be used to develop novel PAD3-selective inhibitors. In addition, similarities between PAD3 and PAD4 were found based on the investigation of PAD4 reactivity with S100A3 in vitro. A comparison of the structures of PAD1, PAD2, PAD3, and PAD4 implied that the flexibility of the structures around the active site may lead to different substrate selectivity among these PAD isozymes.


Subject(s)
Drug Design , Enzyme Inhibitors/pharmacology , Protein-Arginine Deiminase Type 3/chemistry , Protein-Arginine Deiminase Type 3/metabolism , Crystallography, X-Ray , Filaggrin Proteins , Humans , Models, Molecular , Protein Binding , Protein Conformation , Protein-Arginine Deiminase Type 3/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...