Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 97: 129541, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37952596

ABSTRACT

Matrix metalloproteinase-9 (MMP-9) is a secreted zinc-dependent endopeptidase that degrades the extracellular matrix and basement membrane of neurons, and then contributes to synaptic plasticity by remodeling the extracellular matrix. Inhibition of MMP-9 activity has therapeutic potential for neurodegenerative diseases such as fragile X syndrome. This paper reports the molecular design, synthesis, and in vitro studies of novel indole derivatives as inhibitors of proMMP-9 activation. High-throughput screening (HTS) of our internal compound library and subsequent merging of hit compounds 1 and 2 provided compound 4 as a bona-fide lead. X-ray structure-based design and subsequent lead optimization led to the discovery of compound 33, a highly potent and selective inhibitor of proMMP-9 activation.


Subject(s)
Enzyme Precursors , Matrix Metalloproteinase 9 , Matrix Metalloproteinase 9/metabolism , Enzyme Precursors/metabolism , Extracellular Matrix/metabolism , Indoles/pharmacology , Indoles/metabolism , Metalloendopeptidases/metabolism , Matrix Metalloproteinase Inhibitors
2.
J Am Chem Soc ; 138(35): 11353-9, 2016 09 07.
Article in English | MEDLINE | ID: mdl-27529134

ABSTRACT

A chiral Brønsted acid containing two different acidic sites, chiral carboxylic acid-monophosphoric acid 1a, was designed to be a new and effective concept in catalytic asymmetric hetero-Diels-Alder reactions of azopyridinecarboxylate with amidodienes. The multipoint hydrogen-bonding interactions among the carboxylic acid, monophosphoric acid, azopyridinecarboxylate, and amidodiene achieved high catalytic and chiral efficiency, producing substituted 1,2,3,6-tetrahydropyridazines with excellent stereocontrol in a single step. This constitutes the first example of regio-, diastereo-, and enantioselective azo-hetero-Diels-Alder reactions by chiral Brønsted acid catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL