Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 219
Filter
1.
Antibiotics (Basel) ; 12(1)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36671317

ABSTRACT

BACKGROUND: Staphylococcus aureus is an opportunistic pathogen and a major cause of nosocomial and community-acquired infections. The alarming rise in Methicillin-resistant S. aureus (MRSA) infection worldwide and the emergence of vancomycin-resistant MRSA strains have created an urgent need to identify new and alternative treatment options. Triple combinations of antimicrobials with different antimicrobial mechanisms may be a good choice to overcome antimicrobial resistance. METHODS: In this study, we combine two natural compounds: kuraridin from Sophora flavescens and epicatechin gallate (ECG) from Camellia sinensis (Green tea), which could provide the best synergy with antibiotics against a selected panel of laboratory MRSA with known resistant mechanisms and clinical community-associated (CA) and hospital-associated (HA) MRSA as well. RESULTS: The combined use of ECG and kuraridin was efficacious in inhibiting the growth of a panel of tested MRSA strains. The antibacterial activities of gentamicin, fusidic acid and vancomycin could be further enhanced by the addition of ECG and kuraridin. In time-kill study, when vancomycin (0.5 µg/mL) was combined with ECG (2 µg/mL) and kuraridin (2 µg/mL), a very strong bactericidal growth inhibition against 3 tested strains ATCC25923, MRSA ST30 and ST239 was observed from 2 to 24 h. ECG and kuraridin both possess anti-inflammatory activities in bacterial toxin-stimulated peripheral blood mononuclear cells by suppressing the production of inflammatory cytokines (IL-1ß, IL-6 and TNFα) and are non-cytotoxic. In a murine pneumonia model infected with ATCC25923, MRSA ST30 or ST239, the combined use of ECG and kuraridin with vancomycin could significantly reduce bacterial counts. CONCLUSIONS: The present findings reveal the potential of ECG and kuraridin combination as a non-toxic herbal and antibiotics combination for MRSA treatment with antibacterial and anti-inflammatory activities.

2.
Pharmaceutics ; 13(9)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34575478

ABSTRACT

High prevalence rates of methicillin-resistant Staphylococcus aureus (MRSA) and lack of effective antibacterial treatments urge discovery of alternative therapeutic modalities. The advent of antibacterial photodynamic therapy (aPDT) is a promising alternative, composing rapid, nonselective cell destruction without generating resistance. We used a panel of clinically relevant MRSA to evaluate hypericin (Hy) and pheophobide a (Pa)-mediated PDT with clinically approved methylene blue (MB). We translated the promising in vitro anti-MRSA activity of selected compounds to a full-thick MRSA wound infection model in mice (in vivo) and the interaction of aPDT innate immune system (cytotoxicity towards neutrophils). Hy-PDT consistently displayed lower minimum bactericidal concentration (MBC) values (0.625-10 µM) against ATCC RN4220/pUL5054 and a whole panel of community-associated (CA)-MRSA compared to Pa or MB. Interestingly, Pa-PDT and Hy-PDT topical application demonstrated encouraging in vivo anti-MRSA activity (>1 log10 CFU reduction). Furthermore, histological analysis showed wound healing via re-epithelization was best in the Hy-PDT group. Importantly, the dark toxicity of Hy was significantly lower (p < 0.05) on neutrophils compared to Pa or MB. Overall, Hy-mediated PDT is a promising alternative to treat MRSA wound infections, and further rigorous mechanistic studies are warranted.

3.
J Ethnopharmacol ; 264: 113235, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32777518

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: DG is a herbal formula, containing the root of Salvia miltiorrhiza Bunge (Danshen) and the root of Pueraria lobate (Willd.) Ohwi (Gegen), has a history of usage in China for cardiovascular protection and anti-atherosclerosis. AIM OF THE STUDY: The present study aims to determine the beneficial effect of DG on the hind-limb ischemia rat model which mimics peripheral arterial disease (PAD) and its vasodilative effect on isolated femoral artery. MATERIALS AND METHODS: The vasodilatory effects were assessed by contractile responses to DG in the isolated femoral artery and its underlying mechanisms were evaluated by the involvement of endothelium, potassium channel and calcium channel. For hind-limb ischemia study, treatment outcomes were assessed by evaluating hind-limb blood flow, functional limb recovery, muscle histology and angiogenesis. RESULTS: Our results demonstrated positive dose-dependent vasodilatory response to DG via an endothelium-independent mechanism that involved inwardly rectifying K+ channels and Ca2+ channels. We also demonstrated significant improvement in blood perfusion and micro-vessel density in the ischemic limb and positive effects in functional limb recovery. CONCLUSION: In conclusion, our study supported the potential use of DG as a novel treatment for symptomatic PAD.


Subject(s)
Gait/drug effects , Peripheral Arterial Disease/drug therapy , Plant Extracts/therapeutic use , Pueraria , Salvia miltiorrhiza , Vasodilation/drug effects , Animals , Blood Flow Velocity/drug effects , Blood Flow Velocity/physiology , Disease Models, Animal , Dose-Response Relationship, Drug , Gait/physiology , Hindlimb/blood supply , Hindlimb/drug effects , Male , Organ Culture Techniques , Peripheral Arterial Disease/physiopathology , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Rats , Rats, Sprague-Dawley , Vasodilation/physiology
4.
Curr Med Chem ; 28(21): 4283-4294, 2021.
Article in English | MEDLINE | ID: mdl-33292110

ABSTRACT

BACKGROUND: We report herein the synthesis of a novel dicationic boron dipyrromethene derivative (compound 3) which is symmetrically substituted with two trimethylammonium styryl groups. METHODS: The antibacterial photodynamic activity of compound 3 was determined against sixteen methicillin-resistant Staphylococcus aureus (MRSA) strains, including four ATCC type strains (ATCC 43300, ATCC BAA-42, ATCC BAA-43, and ATCC BAA-44), two mutant strains [AAC(6')-APH(2") and RN4220/pUL5054], and ten nonduplicate clinical strains of hospital- and community-associated MRSA. Upon light irradiation, the minimum bactericidal concentrations of compound 3 were in the range of 1.56-50 µM against all the sixteen MRSA strains. Interestingly, compound 3 was not only more active than an analogue in which the ammonium groups are not directly connected to the n-conjugated system (compound 4), but also showed significantly higher (p < 0.05) antibacterial potency than the clinically approved photosensitizer methylene blue. The skin irritation of compound 3 during topical application was tested on human 3-D skin constructs and proven to be non-irritant in vivo at concentrations below 1.250 mM. In the murine MRSA infected wound study, the colony forming unit reduction of compound 3 + PDT group showed significantly (p < 0.05) higher value (>2.5 log10) compared to other test groups except for the positive control. CONCLUSION: In conclusion, the present study provides a scientific basis for future development of compound 3 as a potent photosensitizer for photodynamic therapy for MRSA wound infection.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Photochemotherapy , Animals , Anti-Bacterial Agents/pharmacology , Boron , Humans , Mice , Microbial Sensitivity Tests , Photosensitizing Agents/therapeutic use , Porphobilinogen/analogs & derivatives
5.
Phytother Res ; 35(4): 2108-2118, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33205491

ABSTRACT

The biological activities of water-soluble components of edible mushroom Rubinoboletus ballouii (RB) were seldom reported. Polysaccharides of RB (RBP) were prepared and well-characterized using chemical analyses. The immunomodulatory properties of RBP were investigated using human monocyte-derived dendritic cells (moDC) in vitro, and cyclophosphamide (CTX)-induced immunosuppressive mouse model. Results showed that RBP was found to contain 80.6% (w/w) of neutral sugars including D-fucose, D-mannose, D-glucose and D-galactose (1.7:1.4:1.0:1.8), and 12.5% (w/w) of proteins, which composed of glutamine, threonine, serine, etc. RBP could promote the maturation of moDC and increase the secretion of IL-12p40, IL-10, and TNF-α. Furthermore, the stimulation of IL-12p40 production was inhibited by pretreatment with toll-like receptor (TLR)-4 blocker or NF-κB pathway blocker, suggesting that the activation of moDC by RBP was mediated through NF-κB pathway via TLR-4 receptor. On the other hand, in CTX-treated mice, RBP restored the loss of CD34bright CD45dim hematopoietic stem cells and increased IL-2 production in sera and splenocytes culture supernatant, as well as up-regulated the percentage of CD4+ T helper lymphocyte in mice splenocytes. These findings strongly suggested that RBP are the active ingredients of RB responsible for its immunostimulatory actions and deserved to be further investigated as cancer supplements.


Subject(s)
Basidiomycota/chemistry , NF-kappa B/metabolism , Polysaccharides/therapeutic use , Toll-Like Receptor 4/metabolism , Animals , Humans , Mice , Polysaccharides/pharmacology
6.
J Ethnopharmacol ; 262: 113151, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32736050

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Radix Salvia Miltiorrhiza (Danshen) and Radix Pueraria Lobate (Gegen) are officially listed in the Chinese Pharmacopoeia and have long been used together as a Compound Chinese Traditional Medicine (CCTM) for treatment of coronary heart diseases, which are often co-administered with aspirin or warfarin to patients suffering from cardiovascular diseases. AIM OF STUDY: Since significant pharmacokinetic and pharmacodynamic interactions between Danshen-Gegen (DG) formula and aspirin/warfarin have been observed in our previous rat studies, the current study was proposed aiming to further verify such pharmacokinetic and pharmacodynamic interactions in healthy human subjects and explore related mechanisms. MATERIALS AND METHODS: A 5-day, multiple dose, five-session clinical trial has been carried out (n = 14) with 2-week washout periods between sessions, during which the subjects would receive different combinations of the medications. Plasma samples were collected for pharmacokinetic evaluation, and whole blood samples were collected for pharmacodynamic evaluation. In addition, an in-vitro mechanistic study is conducted to investigate the role of danshensu on the anti-thrombotic and anti-platelet aggregation effects of warfarin and aspirin respectively. RESULTS: Significant pharmacokinetic and pharmacodynamic herb-drug interactions were observed in healthy human subjects. pharmacokinetically, co-administration of DG with aspirin or warfarin could lead to a moderately increased AUC0→t of aspirin and a decreased AUC0→t of 7-hydroxyl warfarin respectively. The systemic exposure of danshensu (DSS, the marker component of DG) would be significantly increased after co-administration with warfarin. Pharmacodynamically, a reduction in systemic thromboxane B2 concentration was noticed after administration of DG with aspirin, which could be associated with the increased systemic exposure of aspirin and the synergistic effect of danshensu, aspirin and salicylic acid on cyclooxygenase (COX) inhibition. An offset on the warfarin induced soluble thrombomodulin induction was observed after its co-administration with DG, which could be partially attributed to the COX-2 inhibition effect of danshensu. CONCLUSION: Our results indicated that co-administration of DG with aspirin/warfarin would lead to significant pharmacokinetic and pharmacodynamic herb-drug interactions in healthy human subjects.


Subject(s)
Aspirin/blood , Drugs, Chinese Herbal/metabolism , Herb-Drug Interactions/physiology , Pueraria , Salvia miltiorrhiza , Warfarin/blood , Adult , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/blood , Anticoagulants/administration & dosage , Anticoagulants/blood , Aspirin/administration & dosage , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/isolation & purification , Healthy Volunteers , Humans , Male , Middle Aged , Pilot Projects , Warfarin/administration & dosage , Young Adult
7.
Emerg Microbes Infect ; 9(1): 1628-1637, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32619386

ABSTRACT

Antimicrobial photodynamic therapy (aPDT) is an innovative approach to combat multi-drug resistant bacteria. It is known that cationic Zn(II) phthalocyanines (ZnPc) are effective in mediating aPDT against methicillin-resistant Staphylococcus aureus (MRSA). Here we used ZnPc-based photosensitizer named ZnPcE previously reported by our research group to evaluate its aPDT efficacy against broad spectrum of clinically relevant MRSAs. Remarkably, in vitro anti-MRSA activity was achieved using near-infrared (NIR, >610 nm) light with minimal bactericidal concentrations ranging <0.019-0.156 µM against the panel of MRSAs. ZnPcE was not only significantly (p < .05) more potent than methylene blue, which is a clinically approved photosensitizer but also demonstrated low cytotoxicity against human fibroblasts cell line (Hs-27) and human immortalized keratinocytes cell line (HaCaT). The toxicity was further evaluated on human 3-D skin constructs and found ZnPcE did not manifest in vivo skin irritation at ≤7.8 µM concentration. In the murine MRSA wound model, ZnPcE with PDT group demonstrated > 4 log10 CFU reduction and the value is significantly higher (p < .05) than all test groups except positive control. To conclude, results of present study provide a scientific basis for future clinical evaluation of ZnPcE-PDT on MRSA wound infection.


Subject(s)
Indoles/administration & dosage , Methicillin-Resistant Staphylococcus aureus/drug effects , Organometallic Compounds/administration & dosage , Photochemotherapy/methods , Photosensitizing Agents/administration & dosage , Staphylococcal Infections/drug therapy , Administration, Topical , Animals , Cell Line , Disease Models, Animal , Humans , Indoles/chemistry , Indoles/pharmacology , Isoindoles , Male , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Mice , Microbial Sensitivity Tests , Molecular Structure , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Zinc Compounds
8.
Eur J Med Chem ; 200: 112341, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32505848

ABSTRACT

The high prevalence of methicillin-resistant Staphylococcus aureus (MRSA) causing skin and soft tissue infections in both the community and healthcare settings challenges the limited options of effective antibiotics and motivates the search for alternative therapeutic solutions, such as antibacterial photodynamic therapy (aPDT). While many publications have described the promising anti-bacterial activities of PDT in vitro, its applications in vivo and in the clinic have been very limited. This limited availability may in part be due to variabilities in the selected photosensitizing agents (PS), the variable testing conditions used to examine anti-bacterial activities and their effectiveness in treating MRSA infections. We thus sought to systematically review and examine the evidence from existing studies on aPDT associated with MRSA and to critically appraise its current state of development and areas to be addressed in future studies. In 2018, we developed and registered a review protocol in the International Prospective Register of Systematic Reviews (PROSPERO) with registration No: CRD42018086736. Three bibliographical databases were consulted (PUBMED, MEDLINE, and EMBASE), and a total of 113 studies were included in this systematic review based on our eligibility criteria. Many variables, such as the use of a wide range of solvents, pre-irradiation times, irradiation times, light sources and light doses, have been used in the methods reported by researchers, which significantly affect the inter-study comparability and results. On another note, new approaches of linking immunoglobulin G (IgG), antibodies, efflux pump inhibitors, and bacteriophages with photosensitizers (PSs) and the incorporation of PSs into nano-scale delivery systems exert a direct effect on improving aPDT. Enhanced activities have also been achieved by optimizing the physicochemical properties of the PSs, such as the introduction of highly lipophilic, poly-cationic and site-specific modifications of the compounds. However, few in vivo studies (n = 17) have been conducted to translate aPDT into preclinical studies. We anticipate that further standardization of the experimental conditions and assessing the efficacy in vivo would allow this technology to be further applied in preclinical trials, so that aPDT would develop to become a sustainable, alternative therapeutic option against MRSA infection in the future.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Photochemotherapy/methods , Staphylococcal Infections/therapy , Antibodies, Bacterial/therapeutic use , Drug Delivery Systems/methods , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/radiation effects , Photochemotherapy/standards , Photosensitizing Agents/therapeutic use
9.
Biomedicines ; 8(6)2020 May 29.
Article in English | MEDLINE | ID: mdl-32485946

ABSTRACT

A series of cationic boron dipyrromethene (BODIPY) derivatives were synthesized and characterized with various spectroscopic methods. Having the ability to generate singlet oxygen upon irradiation, these compounds could potentially serve as photosensitizers for antimicrobial photodynamic therapy. Of the five BODIPYs being examined, the dicationic aza-BODIPY analogue (compound 5) demonstrated the highest potency against a broad spectrum of clinically relevant methicillin-resistant Staphylococcus aureus (MRSA), including four ATCC-type strains (ATCC 43300, ATCC BAA-42, ATCC BAA-43, and ATCC BAA-44), two strains carrying specific antibiotic resistance mechanisms [-AAC(6')-APH(2") and RN4220/pUL5054], and ten non-duplicate clinical strains from hospital- and community-associated MRSAs of the important clonal types ST239, ST30, and ST59, which have previously been documented to be prevalent in Hong Kong and its neighboring countries. The in vitro anti-MRSA activity of compound 5 was achieved upon irradiation with near-infrared light (>610 nm) with minimal bactericidal concentrations (MBCs) ranging from 12.5 to 25 µM against the whole panel of MRSAs, except the hospital-associated MRSAs for which the MBCs were in the range of 50-100 µM. Compound 5 was significantly (p < 0.05) more potent than methylene blue, which is a clinically approved photosensitizer, indicating that it is a promising antimicrobial agent that is worthy of further investigation.

10.
J Photochem Photobiol B ; 203: 111776, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31931388

ABSTRACT

Due to the emergence of antibiotic resistance, antimicrobial photodynamic therapy (aPDT) has recently been demonstrated as a promising alternative to antibiotics to treat wound infections caused by multidrug-resistant (MDR) pathogens. This study aimed to evaluate the bacterial killing efficiency of aPDT mediated by methylene blue (MB) loaded thermosensitive hydrogels against methicillin-resistant Staphylococcus aureus (MRSA). Box-Behnken Design method was employed to investigate the impacts of the polymer compositions, Poloxamer 407, Poloxamer 188 and Carbopol 934P, on the gelation temperature (Tsol-gel) and release rate of MB. The viscosity and in vitro bacterial killing efficiency of three selected formulations with Tsol-gel ranged 25-34 °C and MB release in 2 h (the incubation time used for aPDT experiment) ≥ 70%, were assessed. The viscosity was found to increase with increasing P407 content and increasing total gel concentration. In the in vitro aPDT experiment, all tested MB-hydrogels demonstrated >2.5 log10 colony forming unit (CFU) reduction against three clinical relevant MRSA strains. Interestingly, the bacterial reduction increased with decreasing amount of gel added (reduced MB concentration). This was possibly attributed to the increased viscosity at higher gel concentration reducing the diffusion rate of released MB towards bacterial cells leading to reduced aPDT efficiency. In summary, aPDT with the thermosensitive MB hydrogel formulations is a promising treatment strategy for wound infections.


Subject(s)
Anti-Infective Agents/chemistry , Hydrogels/chemistry , Methylene Blue/chemistry , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Drug Carriers/chemistry , Drug Liberation , Light , Methicillin-Resistant Staphylococcus aureus/drug effects , Methylene Blue/metabolism , Methylene Blue/pharmacology , Rheology , Temperature , Viscosity
11.
Front Oncol ; 10: 574827, 2020.
Article in English | MEDLINE | ID: mdl-33552955

ABSTRACT

Colorectal cancer is the third most frequently diagnosed cancer worldwide. Clinically, chemotherapeutic agents such as FOLFOX are the mainstay of colorectal cancer treatment. However, the side effects including toxicity of FOLFOX stimulated the enthusiasm for developing adjuvants, which exhibit better safety profile. Turmeric extract (TE), which has been previously shown to suppress the growth of human and murine colon xenografts, was further demonstrated here for its inhibitory effects on colon cancer patient-derived xenografts (PDX). PDX models were successfully established from tissues of colon cancer patients and the PDX preserved the heterogeneous architecture through passages. NOD/SCID mice bearing PDX were treated either with TE or FOLFOX and differential responses toward these treatments were observed. The growth of PDX, metastasis and tumor recurrence in PDX-bearing mice were suppressed after TE treatments with 60% anti-tumor response rate and 83.3% anti-metastasis rate. Mechanistic studies showed that TE reduced tumor cell proliferation, induced cell apoptosis, inhibited metastasis via modulating multiple targets, such as molecules involved in Wnt and Src pathways, EMT and EGFR-related pathways. Nevertheless, FOLFOX treatments inhibited the PDX growth with sharp decreases of mice body weight and only mild anti-metastasis activities were observed. Furthermore, in order to have a better understanding of the underlying mechanisms, network pharmacology was utilized to predict potential targets and mechanism. In conclusion, the present study demonstrated for the first time that oral TE treatment was effective to suppress the growth of colon PDX and the recurrence of colon tumors in mice. The findings obtained from this clinically relevant PDX model would certainly provide valuable information for the potential clinical use of TE in colorectal cancer patients. The application of PDX model was well illustrated here as a good platform to verify the efficacy of multi-targeted herbal extracts.

12.
Onco Targets Ther ; 12: 5823-5833, 2019.
Article in English | MEDLINE | ID: mdl-31440058

ABSTRACT

Background and purpose: Verticillin A is a fungal epipolythiodioxopiperazine (ETP) metabolite that was isolated from Amanita flavorubescens Alk infected by Verticillium sp. It was previously proven to possess potent anti-tumor cell growth activity, and we have recently determined that verticillin A is a selective inhibitor of H3K9me3-specific histone methyltransferase. The objective of this study was to find out whether verticillin A is an effective agent for suppression of gastric and cervical tumor progression. Materials and methods: Wound healing and transwell assays was performed to evaluate the effect of verticillin A on hepatocyte growth factor (HGF)-induced AGS and HeLa cells migration and invasion in vitro. Western blot was used to detect signaling proteins verticillin A affected. Results: We determined that verticillin A effectively suppressed hepatocyte growth factor (HGF)-induced AGS and HeLa cells migration and invasion in vitro. At the molecular level, we demonstrated that verticillin A inhibited HGF-induced c-Met phosphorylation and repressed the expression of total c-Met protein in AGS and HeLa cells, resulting from reduced expression of fatty acid synthase. In addition, verticillin A could suppress c-Met downstream FAK/Src signaling pathways by impairing c-Met phosphorylation induced by HGF. Conclusion: Our study demonstrated verticillin A inhibits the migration ability of human gastric cancer (AGS) cells and cervical cancer (HeLa) cells by targeting c-Met and its downstream FAK/Src signaling pathways, and suggested that verticillin A acts as a novel HGF/c-Met inhibitor by reducing expression of this receptor.

13.
Phytomedicine ; 60: 152886, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30910259

ABSTRACT

BACKGROUND: Esophageal cancer (EC) is a malignant gastrointestinal cancer with high morbidity worldwide and is the fourth leading cause of cancer-related deaths in China. Even though surgery and/or chemotherapy/chemoradiation might achieve good therapeutic response, recurrence rate is high due to cancer metastasis. Hence, the use of alternative adjuvant treatments, such as herbal medicines, for metastatic EC remains a great desire of the patients. Our previous studies have demonstrated the anti-metastatic efficacy of hot water extract of Andrographis paniculata (APW) in human esophageal cancer cells and tumor-bearing nude mice. PURPOSE: In the present study, the immunomodulatory activities of APW were further evaluated in human peripheral blood mononuclear cells (PBMCs) and in a carcinogen-induced esophageal tumorigenesis model using immune-competent C57BL/6 mice. Besides, the inhibitory effects of APW on esophageal cancer cell line-based xenografts and patient-derived xenografts (PDX) were examined so as to illustrate the potential multi-targeted efficacies of APW in esophageal cancer in pre-clinical models. RESULTS: In vitro results showed that APW could stimulate proliferation of PBMCs, as well as TNF-α and IFN-γproductions. In mice with 4-nitroquinoline 1-oxide-induced tumorigenesis, 21-day oral treatment with APW (1600 mg/kg) decreased the level of dysplasia in esophagus and significantly modulated the population of regulatory T cells. The cytokines productions by spleen lymphocytes of APW-treated mice were shifted towards normal resting state (i.e. unchallenged with carcinogen). Furthermore, APW treatment suppressed the growth of cell line-based xenografts by significantly increasing apoptosis in tumors, without causing severe body weight loss as chemotherapeutics did. Most importantly, the inhibitory effects of APW treatment on esophageal patient-derived xenografts growth were demonstrated for the first time. Besides, several diterpenes were detected in the plasma after oral administration of APW in mice, suggesting that multi-components of APW were bioavailable and might have contributed towards the varied pharmacological activities demonstrated in our studies. CONCLUSION: APW was shown to possess anti-tumor, anti-metastatic and immunomodulatory activities in esophageal cancer cell-based and animal models, including immunocompromised mice model and clinically relevant PDX model. Our findings illustrated the potential multi-targeted efficacies of APW in esophageal cancer management.


Subject(s)
Andrographis/chemistry , Esophageal Neoplasms/drug therapy , Immunologic Factors/pharmacology , Plant Extracts/pharmacology , 4-Nitroquinoline-1-oxide/adverse effects , Administration, Oral , Animals , Apoptosis/drug effects , Cell Line, Tumor , Chemotherapy, Adjuvant , Disease Models, Animal , Diterpenes/blood , Heterografts , Humans , Immunologic Factors/chemistry , Leukocytes, Mononuclear/drug effects , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Plant Extracts/chemistry , Plants, Medicinal
14.
Phytomedicine ; 46: 131-141, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-30097113

ABSTRACT

BACKGROUND: Curcumin, a well-studied component in turmeric, exhibits potent antitumor effects in colorectal cancer. Previous studies showed that turmerones raised the accumulation of curcumin inside colonic cells, and curcumin present in turmeric ethanolic extract had enhanced anti-tumor activities in mice. Metastasis accounts for more than 90% colorectal cancer deaths. However, the anti-metastatic effect of turmeric extract on colorectal cancer is still unknown. METHODS: In the present study, colony formation, scratch, transwell and Western blot were used to assess colony formation, motility, migration and underlying mechanisms in vitro, respectively. Anti-tumor and anti-metastatic effects in vivo were investigated using an orthotopic xenograft model. RESULTS: Turmeric extract exhibited cytotoxic effect, inhibited colony formation, decreased cell motility, migration and epithelial-mesenchymal transitions through regulating multiple pathways including cofilin, FAK/p-Src, AKT, Erk and STAT3 signaling pathways in murine colorectal cancer cells. Furthermore, turmeric extract at 200 mg/kg could decrease colon tumor burden and inhibit liver and lung metastasis in vivo. Treatment of turmeric extract enhanced immunity through T cell stimulation, changed tumor microenvironment, exerted anti-metastatic effects which were shown for the first time in pre-clinical colorectal cancer models. The decrease of immunity after FOLFOX treatment was also firstly demonstrated in mouse model. CONCLUSIONS: Turmeric extract was demonstrated for the first time for its anti-tumor and anti-metastatic effects in both colorectal cancer cells and orthotopic mouse model through regulation of multiple targets. These findings strongly suggested the promising use of turmeric extract as chemopreventive or chemotherapeutic agent for colorectal cancer patients with metastasis.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Curcumin/pharmacology , Plant Extracts/pharmacology , Animals , Cell Line, Tumor , Curcuma , Fluorouracil/pharmacology , Humans , Male , Mice , Mice, Inbred BALB C , Signal Transduction/drug effects , Tumor Burden , Xenograft Model Antitumor Assays
15.
Mol Omics ; 14(3): 156-169, 2018 Jun 12.
Article in English | MEDLINE | ID: mdl-29676772

ABSTRACT

BACKGROUND: Eriocalyxin B (EriB) is a natural ent-kaurane diterpenoid obtained from Isodon eriocalyx var. laxiflora (family Lamiaceae), which has multiple biological activities (e.g. anti-tumor and anti-inflammatory) via the alteration of gene expression and signaling transduction. Recently, RNA sequencing (RNA-seq) has been developed as a dynamic transcriptome approach to analyze the transcriptional profile and in addition use such gene expression profiles to identify novel candidate genes in a zebrafish model. In the present study, a transcriptome analysis was performed to identify differentially expressed genes (DEGs) in an EriB-exposed zebrafish model. RESULTS: RNA sequencing was conducted on zebrafish embryos after EriB (10 µM and 15 µM) treatment for 72 h. A total of 1570 (405 up-regulated and 1165 down-regulated) and 2511 genes (543 up-regulated and 1968 down-regulated) were identified in the 10 µM and 15 µM groups, respectively. Gene ontology analysis was then performed to elucidate the mechanism of action and effects of EriB. We found that 4 pathways were significantly enriched, which include glutathione metabolism, the metabolism of xenobiotics by cytochrome P450, tight junctions, and phototransduction. The critical transcriptional regulators for the DEGs were also identified by Ingenuity Pathway Analysis after the construction of a protein-protein network, which involves p53, c-myc, binding transcription factor 2, sterol regulatory element binding transcription factor 2, nuclear factor erythroid 2 like 2, and interferon regulatory factor 3. CONCLUSION: In summary, this is the first study to comprehensively explore the effects of EriB in a zebrafish model using a transcriptome analysis approach. Several important genes with substantial changes in expression levels were discovered. The results of this study will provide insights for the future investigation on the biological activities or toxic effects of EriB.

16.
Phytother Res ; 32(7): 1388-1396, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29577460

ABSTRACT

Esophageal cancer (EC) is a seriously invasive malignancy with high mortality and poor prognosis. Metastasis of EC is the major cause of mortality. Our studies previously demonstrated that a herbal medicine Andrographis paniculata (AP) significantly suppressed EC growth and metastasis in vitro and in vivo. However, the underlying mechanisms responsible for these effects have not yet been systematically elucidated. In this context, gene expression profiling of AP-treated squamous EC cells (EC-109) was performed to reveal the regulatory mechanisms of AP in antitumor and antimetastasis signaling pathways using gene expression microarray analysis. Differentially expressed genes were identified by Affymetrix Gene Chip, followed by the real-time polymerase chain reaction validation. The results showed that the canonical pathways were significantly regulated by AP treatment, including multiple genes related to proliferation, apoptosis, intercellular adhesion, metastatic processes, and drug resistance, such as WNT, TGF-ß, MAPK and ErbB signaling pathways, and ATP-binding cassette transporter subfamily members. This genomic study emerges candidate molecular targets and pathways to reveal the mechanisms involved in AP's effects, which provides scientific evidence to support the clinical application of AP in EC treatment.


Subject(s)
Andrographis/chemistry , Esophageal Neoplasms/drug therapy , Gene Expression Profiling/methods , Phytotherapy/methods , Plants, Medicinal/metabolism , Esophageal Neoplasms/pathology , Humans
17.
Biochem Pharmacol ; 150: 191-201, 2018 04.
Article in English | MEDLINE | ID: mdl-29454618

ABSTRACT

Bigelovin, a sesquiterpene lactone, has been demonstrated to induce apoptosis, inhibit inflammation and angiogenesis in vitro, but its potential anti-metastatic activity remains unclear. In the present study, two colon cancer mouse models, orthotopic tumor allografts and experimental metastatic models were utilized to investigate the progression and metastatic spread of colorectal cancer after bigelovin treatments. Results showed that bigelovin (intravenous injection; 0.3-3 mg/kg) significantly suppressed tumor growth and inhibited liver/lung metastasis with modulation of tumor microenvironment (e.g. increased populations of T lymphocytes and macrophages) in orthotopic colon tumor allograft-bearing mice. Furthermore, the inhibitory activities were also validated in the experimental human colon cancer metastatic mouse model. The underlying mechanisms involved in the anti-metastatic effects of bigelovin were then revealed in murine colon tumor cells colon 26-M01 and human colon cancer cells HCT116. Results showed that bigelovin induced cytotoxicity, inhibition of cell proliferation, motility and migration in both cell lines, which were through interfering IL6/STAT3 and cofilin pathways. Alternations of the key molecules including Rock, FAK, RhoA, Rac1/2/3 and N-cadherin, which were detected in bigelovin-treated cancer cells, were also observed in the tumor allografts of bigelovin-treated mice. These findings strongly indicated that bigelovin has potential to be developed as anti-tumor and anti-metastatic agent for colorectal cancer.


Subject(s)
Colorectal Neoplasms/drug therapy , Growth Inhibitors/administration & dosage , Interleukin-6/metabolism , Lactones/administration & dosage , STAT3 Transcription Factor/metabolism , Sesquiterpenes/administration & dosage , Signal Transduction/drug effects , Animals , Cell Movement/drug effects , Cell Movement/physiology , Colorectal Neoplasms/metabolism , HCT116 Cells , Humans , Injections, Intravenous , Interleukin-6/antagonists & inhibitors , Male , Mice , Mice, Nude , STAT3 Transcription Factor/antagonists & inhibitors , Signal Transduction/physiology , Xenograft Model Antitumor Assays/methods
18.
Curr Cancer Drug Targets ; 18(3): 239-255, 2018.
Article in English | MEDLINE | ID: mdl-28359240

ABSTRACT

Autophagy is an intracellular lysosomal/vacuolar degradation system, in which the inner cytoplasmic cell membrane is degraded by the lysosomal hydrolases, followed by the resulting products released back into the cytosol. It is involved in many physiological processes which are crucial for cell growth and survival. However, disturbance in the autophagic process is often associated with a variety of human diseases, such as cancer. Breast cancer is one of the most malignant tumors characterized by the imbalanced cell proliferation, apoptosis as well as disordered autophagy regulation. The alterations of autophagy related genes or protein levels in breast cancer cells also suggested a potential implication of autophagy in breast cancer development and progression. Many natural products had been reported as potential anti-cancer agents or being considered as direct or indirect sources of new chemotherapy adjuvants to enhance the efficacy or to ameliorate the side effects through the modulation of autophagy. Investigation of the underlying mechanism of these compounds could be crucial for the development of new therapeutic or chemopreventive options for breast cancer treatment. In this review, a summary of those natural products that can regulate autophagy in breast cancer is presented and the potential value of such autophagy modulators on the development of anti-cancer drugs is also discussed.


Subject(s)
Autophagy , Biological Products/therapeutic use , Breast Neoplasms/prevention & control , Animals , Breast Neoplasms/pathology , Female , Humans , Signal Transduction
19.
Chin Med ; 13: 64, 2018.
Article in English | MEDLINE | ID: mdl-30598693

ABSTRACT

BACKGROUND: The incidence and mortality of cancer metastasis is high worldwide. Despite of the chemotherapeutic agents, many cancer patients still take traditional Chinese herbal prescriptions as adjuvant treatments. However, most of these herbal formulae/products lack of evidence-based efficacy. Based on our previous investigations on anti-tumor, anti-angiogenic, anti-metastatic, bone protective and immunomodulating activities of various Chinese herbal medicines, four constituent herbs, namely Andrographis paniculata, Acanthopanax senticosus, Camellia sinensis, and Hedyotis diffusa were eventually selected to form an innovative herbal formula. METHODS: The anti-tumor efficacies of the formula were evaluated in metastatic breast cancer mice model. The bone protective and immunomodulatory effects were also assessed after formula treatment. RESULTS: Our results showed that the breast tumor weight as well as lung and liver metastasis in mice could be reduced after herbal formula treatment for 4 weeks. The breast tumor-induced osteolysis in mice was restored by herbal formula treatment, in which the bone volume in treated mice tibia was comparable to that in the non-tumor bearing normal mice. The IL-12 level was augmented and the survival of mice with metastatic breast tumors was prolonged after treatment. Furthermore, combination of herbal formula with chemotherapeutic agent doxorubicin resulted in better anti-tumor efficacy and increased life span in tumor-bearing mice, when compared with doxorubicin alone treatment. CONCLUSIONS: In summary, our innovative Chinese herbal formula was demonstrated to possess anti-tumor, anti-metastatic and bone-protective activities in metastatic breast tumor-bearing mice. The preclinical data generated in this study would lead to the development of evidence-based supplement as adjuvant therapy for metastatic breast cancer.

20.
Environ Toxicol ; 33(3): 370-380, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29265596

ABSTRACT

Despite the previous reports on melamine contamination in high concentrations some years ago, there were not many studies on low-level exposure in daily life, particularly in pregnancy. We investigated the effect of low-dose melamine on the kidneys of the pregnant rats and their developing embryos/fetuses during various gestational stages namely implantation, gastrulation, organogenesis, maturation and whole pregnancy. Our results showed that the repeated low level of melamine (12.5, 25, and 50 mg/kg bw/d) during pregnancy did not cause obstruction of renal tubules although more precipitating crystals were found in the early gestational periods. Simple hyperplasia in the maternal tubules and pelvic epithelium were more prominent after exposed to melamine during the whole gestational period. Neonatal kidneys significantly suffered more from congestion in glomeruli and interstitium, dilated tubules and interstitial edema after melamine administration to the mother in the late and the whole gestational periods. A trend of advance of glomerular development in fetuses was also observed. We conclude that in utero exposure of low-level melamine could post a risk on the kidneys of the pregnant mother as well as the developing fetuses, which may further increase the possibility of other health problems later in life.


Subject(s)
Kidney/drug effects , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/pathology , Triazines/toxicity , Animals , Embryonic Development , Female , Fetus , Gastrulation/drug effects , Kidney/embryology , Kidney/growth & development , Kidney/pathology , Maternal-Fetal Exchange , Organogenesis/drug effects , Pregnancy , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...