Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Microb Genom ; 7(11)2021 11.
Article in English | MEDLINE | ID: mdl-34812717

ABSTRACT

Staphylococcus aureus is a major bacterial pathogen in humans, and a dominant cause of severe bloodstream infections. Globally, antimicrobial resistance (AMR) in S. aureus remains challenging. While human risk factors for infection have been defined, contradictory evidence exists for the role of bacterial genomic variation in S. aureus disease. To investigate the contribution of bacterial lineage and genomic variation to the development of bloodstream infection, we undertook a genome-wide association study comparing bacteria from 1017 individuals with bacteraemia to 984 adults with asymptomatic S. aureus nasal carriage. Within 984 carriage isolates, we also compared healthcare-associated (HA) carriage with community-associated (CA) carriage. All major global lineages were represented in both bacteraemia and carriage, with no evidence for different infection rates. However, kmers tagging trimethoprim resistance-conferring mutation F99Y in dfrB were significantly associated with bacteraemia-vs-carriage (P=10-8.9-10-9.3). Pooling variation within genes, bacteraemia-vs-carriage was associated with the presence of mecA (HMP=10-5.3) as well as the presence of SCCmec (HMP=10-4.4). Among S. aureus carriers, no lineages were associated with HA-vs-CA carriage. However, we found a novel signal of HA-vs-CA carriage in the foldase protein prsA, where kmers representing conserved sequence allele were associated with CA carriage (P=10-7.1-10-19.4), while in gyrA, a ciprofloxacin resistance-conferring mutation, L84S, was associated with HA carriage (P=10-7.2). In an extensive study of S. aureus bacteraemia and nasal carriage in the UK, we found strong evidence that all S. aureus lineages are equally capable of causing bloodstream infection, and of being carried in the healthcare environment. Genomic variation in the foldase protein prsA is a novel genomic marker of healthcare origin in S. aureus but was not associated with bacteraemia. AMR determinants were associated with both bacteraemia and healthcare-associated carriage, suggesting that AMR increases the propensity not only to survive in healthcare environments, but also to cause invasive disease.


Subject(s)
Bacteremia , Staphylococcal Infections , Adult , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteremia/microbiology , Delivery of Health Care , Drug Resistance, Bacterial/genetics , Genome-Wide Association Study , Humans , Staphylococcal Infections/microbiology , Staphylococcus aureus
2.
EMBO J ; 38(17): e100772, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31355487

ABSTRACT

Bacterial usage of the cyclic dinucleotide c-di-GMP is widespread, governing the transition between motile/sessile and unicellular/multicellular behaviors. There is limited information on c-di-GMP metabolism, particularly on regulatory mechanisms governing control of EAL c-di-GMP phosphodiesterases. Herein, we provide high-resolution structures for an EAL enzyme Bd1971, from the predatory bacterium Bdellovibrio bacteriovorus, which is controlled by a second signaling nucleotide, cAMP. The full-length cAMP-bound form reveals the sensory N-terminus to be a domain-swapped variant of the cNMP/CRP family, which in the cAMP-activated state holds the C-terminal EAL enzyme in a phosphodiesterase-active conformation. Using a truncation mutant, we trap both a half-occupied and inactive apo-form of the protein, demonstrating a series of conformational changes that alter juxtaposition of the sensory domains. We show that Bd1971 interacts with several GGDEF proteins (c-di-GMP producers), but mutants of Bd1971 do not share the discrete phenotypes of GGDEF mutants, instead having an elevated level of c-di-GMP, suggesting that the role of Bd1971 is to moderate these levels, allowing "action potentials" to be generated by each GGDEF protein to effect their specific functions.


Subject(s)
Bdellovibrio bacteriovorus/metabolism , Cyclic AMP/metabolism , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bdellovibrio bacteriovorus/chemistry , Bdellovibrio bacteriovorus/genetics , Binding Sites , Crystallography, X-Ray , Gene Expression Regulation, Bacterial , Models, Molecular , Nucleotides/metabolism , Phosphoric Diester Hydrolases/genetics , Protein Binding , Protein Conformation , Signal Transduction
3.
Front Microbiol ; 10: 1089, 2019.
Article in English | MEDLINE | ID: mdl-31156596

ABSTRACT

Bacteria belonging to the Pseudomonas genus are highly successful colonizers of the plant rhizosphere. The ability of different Pseudomonas species to live either commensal lifestyles or to act as agents of plant-growth promotion or disease is reflected in a large, highly flexible accessory genome. Nevertheless, adaptation to the plant environment involves a commonality of phenotypic outputs such as changes to motility, coupled with synthesis of nutrient uptake systems, stress-response molecules and adherence factors including exopolysaccharides. Cyclic-di-GMP (cdG) is a highly important second messenger involved in the integration of environmental signals with appropriate adaptive responses and is known to play a central role in mediating effective rhizosphere colonization. In this study, we examined the transcription of multiple, reportedly plant-upregulated cdG metabolism genes during colonization of the wheat rhizosphere by the plant-growth-promoting strain P. fluorescens SBW25. While transcription of the tested genes generally increased in the rhizosphere environment, we additionally observed a tightly orchestrated response to environmental cues, with a distinct transcriptional pattern seen for each gene throughout the colonization process. Extensive phenotypical analysis of deletion and overexpression strains was then conducted and used to propose cellular functions for individual cdG signaling genes. Finally, in-depth genetic analysis of an important rhizosphere colonization regulator revealed a link between cdG control of growth, motility and stress response, and the carbon sources available in the rhizosphere.

4.
PLoS Genet ; 13(6): e1006839, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28658302

ABSTRACT

Effective regulation of primary carbon metabolism is critically important for bacteria to successfully adapt to different environments. We have identified an uncharacterised transcriptional regulator; RccR, that controls this process in response to carbon source availability. Disruption of rccR in the plant-associated microbe Pseudomonas fluorescens inhibits growth in defined media, and compromises its ability to colonise the wheat rhizosphere. Structurally, RccR is almost identical to the Entner-Doudoroff (ED) pathway regulator HexR, and both proteins are controlled by the same ED-intermediate; 2-keto-3-deoxy-6-phosphogluconate (KDPG). Despite these similarities, HexR and RccR control entirely different aspects of primary metabolism, with RccR regulating pyruvate metabolism (aceEF), the glyoxylate shunt (aceA, glcB, pntAA) and gluconeogenesis (pckA, gap). RccR displays complex and unusual regulatory behaviour; switching repression between the pyruvate metabolism and glyoxylate shunt/gluconeogenesis loci depending on the available carbon source. This regulatory complexity is enabled by two distinct pseudo-palindromic binding sites, differing only in the length of their linker regions, with KDPG binding increasing affinity for the 28 bp aceA binding site but decreasing affinity for the 15 bp aceE site. Thus, RccR is able to simultaneously suppress and activate gene expression in response to carbon source availability. Together, the RccR and HexR regulators enable the rapid coordination of multiple aspects of primary carbon metabolism, in response to levels of a single key intermediate.


Subject(s)
Bacterial Proteins/genetics , Gluconates/metabolism , Pseudomonas fluorescens/genetics , Transcription Factors/genetics , Binding Sites , Carbon/metabolism , Gene Expression Regulation, Bacterial , Gluconeogenesis/genetics , Glucose/metabolism , Glyoxylates/metabolism , Ligands , Metabolic Networks and Pathways/genetics , Pseudomonas fluorescens/metabolism , Pyruvic Acid/metabolism
5.
Nat Commun ; 5: 3956, 2014 May 23.
Article in English | MEDLINE | ID: mdl-24853639

ABSTRACT

Horizontal gene transfer is an important driver of bacterial evolution, but genetic exchange in the core genome of clonal species, including the major pathogen Staphylococcus aureus, is incompletely understood. Here we reveal widespread homologous recombination in S. aureus at the species level, in contrast to its near-complete absence between closely related strains. We discover a patchwork of hotspots and coldspots at fine scales falling against a backdrop of broad-scale trends in rate variation. Over megabases, homoplasy rates fluctuate 1.9-fold, peaking towards the origin-of-replication. Over kilobases, we find core recombination hotspots of up to 2.5-fold enrichment situated near fault lines in the genome associated with mobile elements. The strongest hotspots include regions flanking conjugative transposon ICE6013, the staphylococcal cassette chromosome (SCC) and genomic island νSaα. Mobile element-driven core genome transfer represents an opportunity for adaptation and challenges our understanding of the recombination landscape in predominantly clonal pathogens, with important implications for genotype-phenotype mapping.


Subject(s)
DNA Transposable Elements/genetics , Genome, Bacterial/genetics , Recombination, Genetic , Staphylococcus aureus/genetics , Chromosomes, Bacterial/genetics , Gene Transfer, Horizontal/genetics , Genetic Variation , Likelihood Functions , Linkage Disequilibrium/genetics , Phylogeny , Species Specificity , Staphylococcus aureus/isolation & purification
6.
BMC Microbiol ; 14: 63, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24621342

ABSTRACT

BACKGROUND: Staphylococcal protein A (spa) is an important virulence factor which enables Staphylococcus aureus to evade host immune responses. Genotypes known as "spa-types", based on highly variable Xr region sequences of the spa-gene, are frequently used to classify strains. A weakness of current spa-typing primers is that rearrangements in the IgG-binding region of the gene cause 1-2% of strains to be designated as "non-typeable". RESULTS: We developed an improved primer which enabled sequencing of all strains, containing any type of genetic rearrangement, in a large study among community carriers and hospital inpatients in Oxfordshire, UK (6110 isolates). We identified eight novel spa-gene variants, plus one previously described. Three of these rearrangements would be designated "non-typeable" using current spa-typing methods; they occurred in 1.8% (72/3905) asymptomatically carried and 0.6% (14/2205) inpatient S. aureus strains. Some individuals were simultaneously colonized by both formerly non-typeable and typeable strains; previously such patients would have been identified as carrying only currently typeable strains, underestimating mixed carriage prevalence and diversity. Formerly non-typeable strains were found in more spa-types associated with multilocus sequence type ST398 (35%), common among livestock, compared to other groups with any non-typeable strains (1-4%), suggesting particular spa-types may have been under-represented in previous human studies. CONCLUSIONS: This improved method allows us to spa-type previously non-typeable strains with rearrangements in the spa-gene and to resolve cases of mixed colonization with deletions in one or more strains, thus accounting for hidden diversity of S. aureus in both community and hospital environments.


Subject(s)
Molecular Typing/methods , Mutation , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology , Staphylococcal Protein A/genetics , Staphylococcus aureus/classification , Staphylococcus aureus/genetics , DNA Primers/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Hospitals , Humans , Molecular Sequence Data , Prevalence , Sensitivity and Specificity , Sequence Analysis, DNA , Staphylococcus aureus/isolation & purification , United Kingdom
7.
J Infect ; 68(5): 426-39, 2014 May.
Article in English | MEDLINE | ID: mdl-24393651

ABSTRACT

BACKGROUND: Staphylococcus aureus nasal carriage increases infection risk. However, few studies have investigated S. aureus acquisition/loss over >1 year, and fewer still used molecular typing. METHODS: 1123 adults attending five Oxfordshire general practices had nasal swabs taken. 571 were re-swabbed after one month then every two months for median two years. All S. aureus isolates were spa-typed. Risk factors were collected from interviews and medical records. RESULTS: 32% carried S. aureus at recruitment (<1% MRSA). Rates of spa-type acquisition were similar in participants S. aureus positive (1.4%/month) and negative (1.8%/month, P = 0.13) at recruitment. Rates were faster in those carrying clonal complex (CC)15 (adjusted (a)P = 0.03) or CC8 (including USA300) (aP = 0.001) at recruitment versus other CCs. 157/274 (57%) participants S. aureus positive at recruitment returning ≥ 12 swabs carried S. aureus consistently, of whom 135 carried the same spa-type. CC22 (including EMRSA-15) was more prevalent in long-term than intermittent spa-type carriers (aP = 0.03). Antibiotics transiently reduced carriage, but no other modifiable risk factors were found. CONCLUSIONS: Both transient and longer-term carriage exist; however, the approximately constant rates of S. aureus gain and loss suggest that 'never' or truly 'persistent' carriage are rare. Long-term carriage varies by strain, offering new explanations for the success of certain S. aureus clones.


Subject(s)
Carrier State/epidemiology , Nasal Mucosa/microbiology , Staphylococcal Infections/epidemiology , Staphylococcus aureus/classification , Staphylococcus aureus/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Carrier State/microbiology , Genotype , Humans , Male , Middle Aged , Molecular Epidemiology , Molecular Typing , Staphylococcal Infections/microbiology , Staphylococcal Protein A/genetics , Staphylococcus aureus/genetics , United Kingdom/epidemiology , Young Adult
8.
PLoS One ; 8(5): e61319, 2013.
Article in English | MEDLINE | ID: mdl-23658690

ABSTRACT

BACKGROUND: Staphylococcus aureus is a major cause of healthcare associated mortality, but like many important bacterial pathogens, it is a common constituent of the normal human body flora. Around a third of healthy adults are carriers. Recent evidence suggests that evolution of S. aureus during nasal carriage may be associated with progression to invasive disease. However, a more detailed understanding of within-host evolution under natural conditions is required to appreciate the evolutionary and mechanistic reasons why commensal bacteria such as S. aureus cause disease. Therefore we examined in detail the evolutionary dynamics of normal, asymptomatic carriage. Sequencing a total of 131 genomes across 13 singly colonized hosts using the Illumina platform, we investigated diversity, selection, population dynamics and transmission during the short-term evolution of S. aureus. PRINCIPAL FINDINGS: We characterized the processes by which the raw material for evolution is generated: micro-mutation (point mutation and small insertions/deletions), macro-mutation (large insertions/deletions) and the loss or acquisition of mobile elements (plasmids and bacteriophages). Through an analysis of synonymous, non-synonymous and intergenic mutations we discovered a fitness landscape dominated by purifying selection, with rare examples of adaptive change in genes encoding surface-anchored proteins and an enterotoxin. We found evidence for dramatic, hundred-fold fluctuations in the size of the within-host population over time, which we related to the cycle of colonization and clearance. Using a newly-developed population genetics approach to detect recent transmission among hosts, we revealed evidence for recent transmission between some of our subjects, including a husband and wife both carrying populations of methicillin-resistant S. aureus (MRSA). SIGNIFICANCE: This investigation begins to paint a picture of the within-host evolution of an important bacterial pathogen during its prevailing natural state, asymptomatic carriage. These results also have wider significance as a benchmark for future systematic studies of evolution during invasive S. aureus disease.


Subject(s)
Evolution, Molecular , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Adult , Asymptomatic Infections , Carrier State , Genome, Bacterial , Humans , INDEL Mutation , Nose/microbiology , Polymorphism, Single Nucleotide , Selection, Genetic , Sequence Analysis, DNA , Staphylococcal Infections/transmission
9.
Proc Natl Acad Sci U S A ; 109(12): 4550-5, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-22393007

ABSTRACT

Whole-genome sequencing offers new insights into the evolution of bacterial pathogens and the etiology of bacterial disease. Staphylococcus aureus is a major cause of bacteria-associated mortality and invasive disease and is carried asymptomatically by 27% of adults. Eighty percent of bacteremias match the carried strain. However, the role of evolutionary change in the pathogen during the progression from carriage to disease is incompletely understood. Here we use high-throughput genome sequencing to discover the genetic changes that accompany the transition from nasal carriage to fatal bloodstream infection in an individual colonized with methicillin-sensitive S. aureus. We found a single, cohesive population exhibiting a repertoire of 30 single-nucleotide polymorphisms and four insertion/deletion variants. Mutations accumulated at a steady rate over a 13-mo period, except for a cluster of mutations preceding the transition to disease. Although bloodstream bacteria differed by just eight mutations from the original nasally carried bacteria, half of those mutations caused truncation of proteins, including a premature stop codon in an AraC-family transcriptional regulator that has been implicated in pathogenicity. Comparison with evolution in two asymptomatic carriers supported the conclusion that clusters of protein-truncating mutations are highly unusual. Our results demonstrate that bacterial diversity in vivo is limited but nonetheless detectable by whole-genome sequencing, enabling the study of evolutionary dynamics within the host. Regulatory or structural changes that occur during carriage may be functionally important for pathogenesis; therefore identifying those changes is a crucial step in understanding the biological causes of invasive bacterial disease.


Subject(s)
Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Bayes Theorem , Cluster Analysis , Disease Progression , Evolution, Molecular , Gene Deletion , Genetic Variation , Genome, Bacterial , Humans , Methicillin/pharmacology , Mutation , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Time Factors
10.
PLoS Pathog ; 8(2): e1002493, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22319440

ABSTRACT

Bdellovibrio bacteriovorus is a Delta-proteobacterium that oscillates between free-living growth and predation on Gram-negative bacteria including important pathogens of man, animals and plants. After entering the prey periplasm, killing the prey and replicating inside the prey bdelloplast, several motile B. bacteriovorus progeny cells emerge. The B. bacteriovorus HD100 genome encodes numerous proteins predicted to be involved in signalling via the secondary messenger cyclic di-GMP (c-di-GMP), which is known to affect bacterial lifestyle choices. We investigated the role of c-di-GMP signalling in B. bacteriovorus, focussing on the five GGDEF domain proteins that are predicted to function as diguanylyl cyclases initiating c-di-GMP signalling cascades. Inactivation of individual GGDEF domain genes resulted in remarkably distinct phenotypes. Deletion of dgcB (Bd0742) resulted in a predation impaired, obligately axenic mutant, while deletion of dgcC (Bd1434) resulted in the opposite, obligately predatory mutant. Deletion of dgcA (Bd0367) abolished gliding motility, producing bacteria capable of predatory invasion but unable to leave the exhausted prey. Complementation was achieved with wild type dgc genes, but not with GGAAF versions. Deletion of cdgA (Bd3125) substantially slowed predation; this was restored by wild type complementation. Deletion of dgcD (Bd3766) had no observable phenotype. In vitro assays showed that DgcA, DgcB, and DgcC were diguanylyl cyclases. CdgA lacks enzymatic activity but functions as a c-di-GMP receptor apparently in the DgcB pathway. Activity of DgcD was not detected. Deletion of DgcA strongly decreased the extractable c-di-GMP content of axenic Bdellovibrio cells. We show that c-di-GMP signalling pathways are essential for both the free-living and predatory lifestyles of B. bacteriovorus and that obligately predatory dgcC- can be made lacking a propensity to survive without predation of bacterial pathogens and thus possibly useful in anti-pathogen applications. In contrast to many studies in other bacteria, Bdellovibrio shows specificity and lack of overlap in c-di-GMP signalling pathways.


Subject(s)
Bdellovibrio/genetics , Bdellovibrio/pathogenicity , Cyclic GMP/analogs & derivatives , Escherichia coli Proteins/genetics , Phosphorus-Oxygen Lyases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bdellovibrio/growth & development , Bdellovibrio/metabolism , Cyclic GMP/metabolism , Escherichia coli Proteins/metabolism , Gene Deletion , Gene Expression Regulation, Bacterial , Phosphorus-Oxygen Lyases/metabolism , Signal Transduction
11.
J Clin Microbiol ; 49(11): 3994-6, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21940476

ABSTRACT

Molecular analysis of Clostridium difficile (28 isolates) from children (n = 128) in Oxfordshire, United Kingdom, identified eight toxigenic genotypes. Six of these were isolated from 27% of concurrent adult C. difficile-associated infections studied (n = 83). No children carried hypervirulent PCR ribotype 027. Children could participate in the transmission of some adult disease-causing genotypes.


Subject(s)
Clostridioides difficile/classification , Clostridioides difficile/isolation & purification , Clostridium Infections/epidemiology , Clostridium Infections/microbiology , Adolescent , Adult , Aged , Aged, 80 and over , Child, Preschool , Clostridioides difficile/genetics , DNA, Bacterial/genetics , Genotype , Humans , Infant , Middle Aged , Molecular Epidemiology , Ribotyping , United Kingdom/epidemiology , Young Adult
12.
J Clin Microbiol ; 48(3): 770-8, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20042623

ABSTRACT

A robust high-throughput multilocus sequence typing (MLST) scheme for Clostridium difficile was developed and validated using a diverse collection of 50 reference isolates representing 45 different PCR ribotypes and 102 isolates from recent clinical samples. A total of 49 PCR ribotypes were represented overall. All isolates were typed by MLST and yielded 40 sequence types (STs). A web-accessible database was set up (http://pubmlst.org/cdifficile/) to facilitate the dissemination and comparison of C. difficile MLST genotyping data among laboratories. MLST and PCR ribotyping were similar in discriminatory abilities, having indices of discrimination of 0.90 and 0.92, respectively. Some STs corresponded to a single PCR ribotype (32/40), other STs corresponded to multiple PCR ribotypes (8/40), and, conversely, the PCR ribotype was not always predictive of the ST. The total number of variable nucleotide sites in the concatenated MLST sequences was 103/3,501 (2.9%). Concatenated MLST sequences were used to construct a neighbor-joining tree which identified four phylogenetic groups of STs and one outlier (ST-11; PCR ribotype 078). These groups apparently correlate with clades identified previously by comparative genomics. The MLST scheme was sufficiently robust to allow direct genotyping of C. difficile in total stool DNA extracts without isolate culture. The direct (nonculture) MLST approach may prove useful as a rapid genotyping method, potentially benefiting individual patients and informing hospital infection control.


Subject(s)
Bacterial Typing Techniques/methods , Clostridioides difficile/classification , Clostridioides difficile/genetics , DNA Fingerprinting/methods , Sequence Analysis, DNA/methods , Clostridioides difficile/isolation & purification , Clostridium Infections/microbiology , Genotype , Humans , Infant , Polymorphism, Genetic , Ribotyping , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...