Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Eat Weight Disord ; 26(8): 2453-2461, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33426629

ABSTRACT

BACKGROUND/AIMS: Whey proteins (WP), obtained from milk after casein precipitation, represent a heterogeneous group of proteins. WP are reported to inhibit food intake in diet-induced experimental obesity; WP have been proposed as adjuvant therapy in oxidative stress-correlated pathologies. This work evaluates the effects of WP in comparison with casein, as a source of alimentary proteins, on food intake, weight growth and some indexes of oxidative equilibrium in Zucker Rats, genetically prone to obesity. METHODS: We monitored food intake and weight of Zucker Rats during the experiment, and some markers of oxidative equilibrium. RESULTS: WP induced significant decrease of food intake in comparison to casein (WP 80.41 ± 1.069 ml/day; CAS: 88.95 ± 1.084 ml/day; p < 0.0005). Body weight growth was slightly reduced, and the difference was just significant (WP 128.2 ± 6.56 g/day; CAS 145.2 ± 3.29 g/day; p = 0.049), while plasma HNE level was significantly lower in WP than in CAS (WP 41.2 ± 6.3 vs CAS 69.61 ± 4.69 pmol/ml, p = 0.007). Mild amelioration of oxidative equilibrium was indicated by a slight increase of total glutathione both in the liver and in the blood and a significant decrease of plasma 4-hydroxynonenal in the group receiving WP. CONCLUSIONS: The effect of WP on food intake and weight growth in Zucker Rats is particularly noteworthy since the nature of their predisposition to obesity is genetic; the possible parallel amelioration of the oxidative balance may constitute a further advantage of WP since oxidative stress is believed to be interwoven to obesity, metabolic syndrome and their complications.


Subject(s)
Obesity , Oxidative Stress , Animals , Eating , Humans , Obesity/drug therapy , Rats , Rats, Zucker , Whey Proteins/pharmacology
2.
J Biol Regul Homeost Agents ; 30(3): 713-726, 2016.
Article in English | MEDLINE | ID: mdl-27655488

ABSTRACT

Osteoporosis is a metabolic multifaceted disorder, characterized by insufficient bone strength. It has been recently shown that advanced glycation end products (AGEs) play a role in senile osteoporosis, through bone cell impairment and altered biomechanical properties. Pentosidine (PENT), a wellcharacterized AGE, is also considered a biomarker of bone fracture. Adequate responses to various hormones, such as 1,25-dihydroxyvitamin D3, are prerequisites for optimal osteoblasts functioning. Vitamin K2 is known to enhance in vitro and in vitro vitamin D-induced bone formation. The aim of the study was to assess the effects of Vitamins D3 and K2 and PENT on in vitro osteoblast activity, to convey a possible translational clinical message. Ex vivo human osteoblasts cultured, for 3 weeks, with vitamin D3 and vitamin K2 were exposed to PENT, a well-known advanced glycoxidation end product for the last 72 hours. Experiments with PENT alone were also carried out. Gene expression of specific markers of bone osteoblast maturation [alkaline phosphatase, ALP; collagen I, COL Iα1; and osteocalcin (bone-Gla-protein) BGP] was measured, together with the receptor activator of nuclear factor kappa-B ligand/osteoproteregin (RANKL/OPG) ratio to assess bone remodeling. Expression of RAGE, a well-characterized receptor of AGEs, was also assessed. PENT+vitamins slightly inhibited ALP secretion while not affecting gene expression, indicating hampered osteoblast functional activity. PENT+vitamins up-regulated collagen gene expression, while protein secretion was unchanged. Intracellular collagen levels were partially decreased, and a significant reduction in BGP gene expression and intracellular protein concentration were both reported after PENT exposure. The RANKL/OPG ratio was increased, favouring bone reabsorption. RAGE gene expression significantly decreased. These results were confirmed by a lower mineralization rate. We provided in vitro evidence that glycoxidation might interfere with the maturation of osteoblasts, leading to morphological modifications, cellular malfunctioning, and inhibition of the calcification process. However, these processes may be all partially counterbalanced by vitamins D3 and K2. Therefore, detrimental AGE accumulation in bone might be attenuated and/or reversed by the presence or supplementation of vitamins D3 and K2.


Subject(s)
Arginine/analogs & derivatives , Cholecalciferol/pharmacology , Lysine/analogs & derivatives , Osteoblasts/drug effects , Vitamin K 2/pharmacology , Alkaline Phosphatase/biosynthesis , Alkaline Phosphatase/genetics , Antigens, Neoplasm/biosynthesis , Antigens, Neoplasm/genetics , Arginine/antagonists & inhibitors , Arginine/toxicity , Bone Remodeling/drug effects , Cells, Cultured , Collagen Type I/biosynthesis , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain , Gene Expression Regulation/drug effects , Humans , Lysine/antagonists & inhibitors , Lysine/toxicity , Mitogen-Activated Protein Kinases/biosynthesis , Mitogen-Activated Protein Kinases/genetics , Osteoblasts/metabolism , Osteocalcin/biosynthesis , Osteocalcin/genetics , Osteogenesis/drug effects , Osteoprotegerin/biosynthesis , Osteoprotegerin/genetics , RANK Ligand/biosynthesis , RANK Ligand/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics
3.
Oxid Med Cell Longev ; 2016: 9348651, 2016.
Article in English | MEDLINE | ID: mdl-27313835

ABSTRACT

RAGE is a multiligand receptor able to bind advanced glycation end-products (AGEs), amphoterin, calgranulins, and amyloid-beta peptides, identified in many tissues and cells, including neurons. RAGE stimulation induces the generation of reactive oxygen species (ROS) mainly through the activity of NADPH oxidases. In neuronal cells, RAGE-induced ROS generation is able to favor cell survival and differentiation or to induce death through the imbalance of redox state. The dual nature of RAGE signaling in neurons depends not only on the intensity of RAGE activation but also on the ability of RAGE-bearing cells to adapt to ROS generation. In this review we highlight these aspects of RAGE signaling regulation in neuronal cells.


Subject(s)
Neurons/metabolism , Reactive Oxygen Species/metabolism , Receptor for Advanced Glycation End Products/metabolism , Animals , Cell Differentiation , Glycation End Products, Advanced/metabolism , Humans , NADPH Oxidases/metabolism , Neurons/cytology , Receptor for Advanced Glycation End Products/chemistry , Signal Transduction
4.
PLoS One ; 11(3): e0152465, 2016.
Article in English | MEDLINE | ID: mdl-27023064

ABSTRACT

The activation of Nrf2 has been demonstrated to play a crucial role in cancer cell resistance to different anticancer therapies. The inhibition of proteasome activity has been proposed as a chemosensitizing therapy but the activation of Nrf2 could reduce its efficacy. Using the highly chemoresistant neuroblastoma cells HTLA-230, here we show that the strong reduction in proteasome activity, obtained by using low concentration of bortezomib (BTZ, 2.5 nM), fails in reducing cell viability. BTZ treatment favours the binding of Nrf2 to the ARE sequences in the promoter regions of target genes such as heme oxygenase 1 (HO-1), the modulatory subunit of γ-glutamylcysteine ligase (GCLM) and the transporter for cysteine (x-CT), enabling their transcription. GSH level is also increased after BTZ treatment. The up-regulation of Nrf2 target genes is responsible for cell resistance since HO-1 silencing and GSH depletion synergistically decrease BTZ-treated cell viability. Moreover, cell exposure to all-trans-Retinoic acid (ATRA, 3 µM) reduces the binding of Nrf2 to the ARE sequences, decreases HO-1 induction and lowers GSH level increasing the efficacy of bortezomib. These data suggest the role of Nrf2, HO-1 and GSH as molecular targets to improve the efficacy of low doses of bortezomib in the treatment of malignant neuroblastoma.


Subject(s)
Bortezomib/pharmacology , Drug Resistance, Neoplasm/drug effects , Glutathione/metabolism , Heme Oxygenase-1/metabolism , NF-E2-Related Factor 2/metabolism , Neuroblastoma/metabolism , Amino Acid Transport System y+/metabolism , Antioxidant Response Elements/genetics , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Gene Expression Regulation, Neoplastic/drug effects , Gene Silencing/drug effects , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Heme Oxygenase-1/genetics , Humans , Neuroblastoma/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Subunits/genetics , Protein Subunits/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic/drug effects , Tretinoin/pharmacology , Up-Regulation/drug effects
5.
Oxid Med Cell Longev ; 2016: 1958174, 2016.
Article in English | MEDLINE | ID: mdl-26697129

ABSTRACT

The transcription factor, nuclear factor erythroid 2 p45-related factor 2 (Nrf2), acts as a sensor of oxidative or electrophilic stresses and plays a pivotal role in redox homeostasis. Oxidative or electrophilic agents cause a conformational change in the Nrf2 inhibitory protein Keap1 inducing the nuclear translocation of the transcription factor which, through its binding to the antioxidant/electrophilic response element (ARE/EpRE), regulates the expression of antioxidant and detoxifying genes such as heme oxygenase 1 (HO-1). Nrf2 and HO-1 are frequently upregulated in different types of tumours and correlate with tumour progression, aggressiveness, resistance to therapy, and poor prognosis. This review focuses on the Nrf2/HO-1 stress response mechanism as a promising target for anticancer treatment which is able to overcome resistance to therapies.


Subject(s)
Drug Resistance, Neoplasm , Heme Oxygenase-1/metabolism , NF-E2-Related Factor 2/metabolism , Neoplasm Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Signal Transduction , Animals , Humans
6.
J Anim Physiol Anim Nutr (Berl) ; 99(5): 856-63, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25628172

ABSTRACT

The aim of the study was to evaluate markers of the acute phase response (APR) in eventing horses by measuring acute phase proteins (APP) (haptoglobin, Hp, and serum amyloid A, SAA), lysozyme, protein adducts such as pentosidine-like adducts (PENT), malondialdehyde adducts (MDA), hydroxynonenal adducts (HNE) and total advanced glycation/glycoxidation end products (AGEs), complete blood count and lymphocyte subpopulations (CD4+, CD8+ and CD21+) both at rest and at the end of an eventing competition. Blood samples were collected from eight Warmblood horses (medium age 10 ± 3) during an official national 2-day event competition at rest (R) and 10 min after the arrival of the cross-country test on the second day. Exercise caused a significant increase in red blood cell number, haemoglobin, packed cell volume, neutrophils, white blood cell and lymphocyte number; however, these values remained within the normal range. The CD4+ and CD8+ cells significantly increased, whereas the CD21+ lymphocytes decreased; a significant increase in serum SAA, lysozyme and protein carbonyl derivates was also observed. Two-day event causes significant changes in APR markers such as lysozyme, protein carbonyl derivates (HNE, AGEs, PENT) and lymphocyte subpopulations. The data support the hypothesis that 2-day event may alter significantly APR markers. Limitations of the study were the relatively small sample size and sampling time conditioned by the official regulations of the event. Therefore, further studies are needed to investigate the time required for recovery to basal values in order to define the possible effects on the immune function of the athlete horse.


Subject(s)
Acute-Phase Proteins/metabolism , Lymphocyte Subsets/physiology , Oxidative Stress/physiology , Physical Conditioning, Animal/physiology , Animals , Biomarkers/blood , Blood Cell Count/veterinary , Female , Horses/physiology , Male , Sports
7.
Cell Death Dis ; 4: e589, 2013 Apr 11.
Article in English | MEDLINE | ID: mdl-23579276

ABSTRACT

Neuroblastoma (NB) is the second most common solid pediatric tumor and is characterized by clinical and biological heterogeneity, and stage-IV of the disease represents 50% of all cases. Considering the limited success of present chemotherapy treatment, it has become necessary to find new and effective therapies. In this context, our approach consists of identifying and targeting key molecular pathways associated with NB chemoresistance. This study has been carried out on three stage-IV NB cell lines with different status of MYCN amplification. Cells were exposed to a standard chemotherapy agent, namely etoposide, either alone or in combination with particular drugs, which target intracellular signaling pathways. Etoposide alone induced a concentration-dependent reduction of cell viability and, at very high doses, totally counteracted cell tumorigenicity and neurosphere formation. In addition, etoposide activated p38 mitogen-activated protein kinase (MAPK), AKT and c-Jun N-terminal kinase. Pre-treatment with SB203580, a p38MAPK inhibitor, dramatically sensibilized NB cells to etoposide, strongly reducing the dosage needed to inhibit tumorigenicity and neurosphere formation. Importantly, SB203580-etoposide cotreatment also reduced cell migration and invasion by affecting cyclooxygenase-2, intercellular adhesion molecule-1, C-X-C chemokine receptor-4 and matrix metalloprotease-9. Collectively, our results suggest that p38MAPK inhibition, in combination with standard chemotherapy, could represent an effective strategy to counteract NB resistance in stage-IV patients.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Enzyme Inhibitors/pharmacology , Etoposide/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Imidazoles/pharmacology , Neoplasm Proteins/antagonists & inhibitors , Pyridines/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Apoptosis/genetics , Cell Differentiation , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Drug Synergism , Humans , JNK Mitogen-Activated Protein Kinases/economics , JNK Mitogen-Activated Protein Kinases/genetics , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasm Staging , Nervous System Neoplasms/drug therapy , Neuroblastoma/drug therapy , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
8.
Exp Clin Endocrinol Diabetes ; 120(10): 586-90, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23073918

ABSTRACT

Matrix metalloproteinases (MMPs), their inhibitors (TIMPs) and inflammatory cytokines, such as interleukin-1 (IL-1), are considered markers of evolution and/or instability of atherosclerotic plaques. Accumulation of Advanced Glycation Endproducts (AGE) is a well known phenomenon in diabetes and has also been considered in the pathogenesis of atherosclerosis. Aim of the present study was to analyse the levels of pentosidine, a fluorescent AGE, and to evaluate the expression of MMP-2, TIMP-3, and IL-1 in an ex vivo model of human advanced atherosclerotic plaques. We intended to test the possible correlation between pentosidine and markers of ECM remodelling and inflammation in the atherosclerotic process, and to investigate if classic risk factors, such as diabetes and hypertension, influenced these biochemical parameters. We found that diabetic plaques showed higher level of pentosidine, as expected, but much lower, or even undetectable, expression levels of MMP-2 and TIMP-3; IL-1 expression was not different between diabetic and non diabetic plaques. Hypertension did not influence any of these parameters. Although the statistical correlations between the expression of the considered genes and pentosidine did not reach significance, slight negative trends were noted between TIMP-3 and IL-1 expression vs. pentosidine content. We suggest that in mature diabetic plaques AGE accumulation can exert stabilizing effects on matrix proteins, while scanty cell presence leads to poor capacity of reactive responses, such as remodelling and inflammation.


Subject(s)
Atherosclerosis/physiopathology , Diabetic Angiopathies/physiopathology , Glycation End Products, Advanced/metabolism , Inflammation Mediators/metabolism , Metalloproteases/metabolism , Plaque, Atherosclerotic/metabolism , Aged , Arginine/analogs & derivatives , Arginine/metabolism , Atherosclerosis/epidemiology , Atherosclerosis/immunology , Biomarkers/metabolism , Carotid Artery, Internal/metabolism , Carotid Stenosis/physiopathology , Diabetic Angiopathies/epidemiology , Diabetic Angiopathies/immunology , Diabetic Angiopathies/metabolism , Extracellular Matrix/metabolism , Gene Expression Regulation , Humans , Interleukin-1alpha/genetics , Interleukin-1alpha/metabolism , Italy/epidemiology , Lysine/analogs & derivatives , Lysine/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Metalloproteases/genetics , Plaque, Atherosclerotic/enzymology , Plaque, Atherosclerotic/etiology , Plaque, Atherosclerotic/physiopathology , Risk Factors , Severity of Illness Index , Tissue Inhibitor of Metalloproteinase-3/genetics , Tissue Inhibitor of Metalloproteinase-3/metabolism
9.
Article in English | MEDLINE | ID: mdl-21096344

ABSTRACT

Wall artery viscoelastic properties (WAVP) are correlated with structural and functional state of the arterial system. An accurate estimation of these properties is achieved measuring wall instantaneous diameter and pressure signals. The aim of this work was to evaluate a new non invasive estimation method of the instantaneous arterial diameter (D), and consequently, WAVP. Ten common carotid arteries of hypertensive men were evaluated. D was calculated by using B-mode ultrasonic imaging and specialized software designed with Artificial Neural Networks. Instantaneous arterial pressure of all subjects was measured by piezoelectric tonometry. Arterial wall properties were evaluated using a linear autoregressive with exogenous input model. The new method, which determinates the arterial diameter, was compared respect to a specialized and previously validated method. Results showed no significant differences in all parameters derived of D (Bland & Altman test) and no differences in all the wall arterial mechanic indexes (p>0.05). For these reasons, the developed software based on Artificial Neural Networks was successful in determining the parameters associated with arterial diameters and it opens up the possibility of real time calculations of arterial wall mechanical properties because of its simplicity.


Subject(s)
Algorithms , Carotid Arteries/diagnostic imaging , Carotid Arteries/physiopathology , Elasticity Imaging Techniques/methods , Image Interpretation, Computer-Assisted/methods , Neural Networks, Computer , Pattern Recognition, Automated/methods , Computer Systems , Elastic Modulus , Humans , Image Enhancement/methods , Male , Reproducibility of Results , Sensitivity and Specificity , Shear Strength , Viscosity
10.
Article in English | MEDLINE | ID: mdl-21096673

ABSTRACT

Arterial behavior analysis requires an accurate and dynamic knowledge of the stimuli and reactions involved. Belonging parameters quantification is performed by a data acquisition process and the application of existing models. However, it turns essentially to analyze the adjustment degree of the aforementioned models in terms of the arterial tree. Blood flow behavior as well as wall shear rate and the arterial compliance are anatomic location dependent. The main objective of the present work is to analyze the existing functional relationships between arterial wall and blood flow, in a particular place (brachial artery), in order to asses the specific model applicability, in cases such Poiseuille or Womersley models. In addition, due to the characteristic of the study, gender differential dynamic responses will be evaluated.


Subject(s)
Brachial Artery/physiology , Models, Cardiovascular , Rheology/methods , Adult , Blood Flow Velocity/physiology , Blood Pressure/physiology , Computer Simulation , Female , Humans , Male , Shear Strength/physiology , Vascular Resistance/physiology , Young Adult
11.
Toxicol Ind Health ; 25(4-5): 325-8, 2009.
Article in English | MEDLINE | ID: mdl-19651804

ABSTRACT

Whey proteins (WP) are known to contain more cysteine than casein (CAS), so it is suggested that they should ameliorate the oxidative equilibrium in the organisms. To evaluate the influence of a WP-based diet on liver glutathione (GSH) content, male Sprague-Dawley rats were fed for 3 weeks a balanced liquid diet containing either WP or CAS as main source of protein. Liver GSH content was evaluated at the end of the treatment by high performance liquid chromatography (HPLC), both in basal conditions and after oxidative stress induced by CCl4 acute intoxication. In basal conditions, WP diet significantly increased hepatic GSH in comparison to CAS diet. After CCl4 intoxication, hepatic GSH was negligibly increased in CAS group, while its increase was much more marked in WP group, so that the difference between the two diets was significant; this suggests that WP provided rats with better ability to increase their GSH synthesis in case of need.


Subject(s)
Carbon Tetrachloride Poisoning/prevention & control , Chemical and Drug Induced Liver Injury/prevention & control , Glutathione/biosynthesis , Milk Proteins/pharmacology , Oxidative Stress/drug effects , Animals , Caseins/pharmacology , Liver/metabolism , Male , Rats , Rats, Sprague-Dawley , Whey Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...