Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(23): 5466-5474, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37288806

ABSTRACT

Perovskite quantum dots (QDs) with high room-temperature luminescence efficiency have been applied in single-photon sources. While the optical properties of large, weakly confined perovskite nanocrystals have been extensively explored at the single-particle level, few studies have focused on single-perovskite QDs with strong quantum confinement. This is mainly due to their poor surface chemical stability. Here we demonstrate that strongly confined CsPbBr3 perovskite QDs (SCPQDs) embedded in a phenethylammonium bromide matrix exhibit a well-passivated surface and improved photostability under intense photoexcitation. We find that in our SCPQDs, photoluminescence blinking is suppressed at moderate excitation intensities, and increasing the excitation rates leads to weak photoluminescence intensity fluctuations accompanied by an unusual spectral blue-shift. We attribute this to a biexciton-like Auger interaction between excitons and trapped excitons formed by surface lattice elastic distortions. This hypothesis is corroborated by the unique repulsive biexciton interaction observed in the SCPQDs.

2.
ACS Appl Mater Interfaces ; 15(25): 30455-30468, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37307198

ABSTRACT

We report a new hybrid organic-inorganic Cu(I) halide, (TMS)3Cu2I5 (TMS = trimethylsulfonium), which demonstrates high efficiency and stable yellow light emission with a photoluminescence quantum yield (PLQY) over 25%. The zero-dimensional crystal structure of the compound is comprised of isolated face-sharing photoactive [Cu2I5]3- tetrahedral dimers surrounded by TMS+ cations. This promotes strong quantum confinement and electron-phonon coupling, leading to a highly efficient emission from self-trapped excitons. The hybrid structure ensures prolonged stability and nonblue emission compared to unstable blue emission from all-inorganic copper(I) halides. Substitution of Cu with Ag leads to (TMS)AgI2, which has a one-dimensional chain structure made of edge-sharing tetrahedra, with weak light emission properties. Improved stability and highly efficient yellow emission of (TMS)3Cu2I5 make it a candidate for practical applications. This has been demonstrated through utilization of (TMS)3Cu2I5 in white light-emitting diode with a high Color Rendering Index value of 82 and its use as a new luminescent agent for visualization of in-depth latent fingerprint features. This work illuminates a new direction in designing multifunctional nontoxic hybrid metal halides.

3.
ACS Omega ; 4(2): 4056-4062, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-31459614

ABSTRACT

Hybrid thin films of crystalline CuSCN and 4-(N,N-dimethylamino)-4'-(N'-methyl)stilbazolium (DAS) in three distinctively different nanostructures were obtained by electrochemical self-assembly from a single pot containing all the chemical ingredients. Their optical properties for UV-vis-NIR absorption, photoluminescence (PL), and PL excitation spectra were examined between 77 and 298 K, in comparison with solution and solid powder of DAS tosylate (DAST). Unlike all other dyes we tested before, PL of DAS was not quenched but rather enhanced when hybridized with CuSCN. DAST exhibited a strong exciton-phonon coupling to weaken, broaden, and red shift PL at room temperature, so that it inversely is strongly enhanced, sharpened, and blue-shifted at 77 K. The PL of the same dye in the hybrid thin film, however, shows a slight red shift and only a moderate enhancement at reduced temperatures due to strong exciton stabilization in dielectric environment of CuSCN and concerted PL by energy transfer from CuSCN to DAS luminophore, making it a unique nearly temperature-independent luminescent material.

4.
J Nanosci Nanotechnol ; 19(8): 4599-4602, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-30913754

ABSTRACT

Charge-transfer complex crystals have been extensively studied because of their metallic conductivity, photoconductivity, ambipolar charge transport, and high career mobility. Numerous studies of their applications for organic electric devices such as organic field effect transistors and solar cells have reported. However, bulky single crystals of charge-transfer complexes are difficult to handle, specifically to be made into a form of a thin film. Recently, nano/micro crystallization of charge-transfer crystal is attracted to realize thin film applications. In this paper, charge transfer complex nanorods composed of dibenzotetrathiafulvalene-tetracyanoquinodimethane (DBTTF-TCNQ) were prepared by the reprecipitation method. The as-formed nanorods possess a kinetically metastable crystal structure different from the thermodynamically stable bulk crystal prepared by slow evaporation of the solvent. From photoconductive measurement, nanorod stacks show a significant photosensitivity (354.57 µA/W) on par with bulk crystal (417.14 µA/W). These results suggest dibenzotetrathiafulvalene-tetracyanoquinodimethane (DBTTF-TCNQ) nanorods have a favorable crystal structure for carrier transport due to the difference of molecular stacking assembly.

5.
Sci Rep ; 5: 16536, 2015 Nov 12.
Article in English | MEDLINE | ID: mdl-26559337

ABSTRACT

The origins of spin exchange in crystalline thin films of Copper Octabutoxy Phthalocyanine (Cu-OBPc) are investigated using Magnetic Circular Dichroism (MCD) spectroscopy. These studies are made possible by a solution deposition technique which produces highly ordered films with macroscopic grain sizes suitable for optical studies. For temperatures lower than 2 K, the contribution of a specific state in the valence band manifold originating from the hybridized lone pair in nitrogen orbitals of the Phthalocyanine ring, bears the Brillouin-like signature of an exchange interaction with the localized d-shell Cu spins. A comprehensive MCD spectral analysis coupled with a molecular field model of a σπ - d exchange analogous to sp-d interactions in Diluted Magnetic Semiconductors (DMS) renders an enhanced Zeeman splitting and a modified g-factor of -4 for the electrons that mediate the interaction. These studies define an experimental tool for identifying electronic states involved in spin-dependent exchange interactions in organic materials.

6.
J Phys Chem Lett ; 6(10): 1834-40, 2015 May 21.
Article in English | MEDLINE | ID: mdl-26263257

ABSTRACT

We present spatially-, temporally- and polarization-resolved dual photoluminescence/linear dichroism microscopy experiments that investigate the correlation between long-range order and the nature of exciton states in solution-processed phthalocyanine thin films. The influence of grain boundaries and disorder is absent in these films because typical grain sizes are 3 orders of magnitude larger than focused excitation beam diameters. These experiments reveal the existence of a delocalized singlet exciton, polarized along the high mobility axis in this quasi-1D electronic system. The strong delocalized π orbitals overlap, controlled by the molecular stacking along the high mobility axis, is responsible for breaking the radiative recombination selection rules. Using our linear dichroism scanning microscopy setup, we further established that a rotation of molecules (i.e., a structural phase transition) that occurs above 100 K prevents the observation of this exciton at room temperature.

7.
J Phys Chem B ; 109(32): 15332-8, 2005 Aug 18.
Article in English | MEDLINE | ID: mdl-16852944

ABSTRACT

In an effort to elucidate the spin (rather than charge) degrees of freedom in colloidal semiconductor nanocrystal quantum dots, we report on a series of static and time-resolved photoluminescence measurements of colloidal CdSe quantum dots in ultrahigh magnetic fields up to 45 T. At low temperatures (1.5-40 K), the steady-state photoluminescence (PL) develops a high degree of circular polarization with applied magnetic field, indicating the presence of spin-polarized excitons. Time-resolved PL studies reveal a marked decrease in radiative exciton lifetime with increasing magnetic field and temperature. Except for an initial burst of unpolarized PL immediately following photoexcitation, high-field time-resolved PL measurements reveal a constant degree of circular polarization throughout the entire exciton lifetime, even in the presence of pronounced exciton transfer via Förster energy transfer processes.

SELECTION OF CITATIONS
SEARCH DETAIL