Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Soft Matter ; 20(21): 4282-4290, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38757720

ABSTRACT

The multicomponent relaxation observed in nuclear magnetic resonance experiments in biological tissues makes it difficult to establish a correlation between specific relaxation times and tissue structural parameters. The analysis of a nanostructure (the characteristic size of 10-1000 nm) is usually based on formulas for relaxation times which depend on structural parameters at the atomic or molecular levels in the size range of 0.1-5 nm. We have recently developed an analysis method in which relaxation times' anisotropy in a sample is explicitly related to its structure of nanocavities containing a liquid or gas. However, the method is based on the analysis of experimental data on the anisotropy of relaxation times obtained by using the standard NMR technique and rotating the sample relative to a magnetic field and requires a series of experiments. In the present study, to address this challenge, we develop a new method of analysis of a multi-exponential magnetic resonance signal that does not require determining relaxation times and eliminates the sample rotation and the necessity of a series of experiments. Using the magnetic resonance imaging (MRI) technique, the total signal from the whole sample was obtained as a sum of the signals (echo decays) from all voxels. In contrast to previous research, the volumes of nanocavities and their angular distribution can be obtained by analyzing a single total signal for the entire cartilage. In addition, within the framework of this approach, it is possible to identify the reason for the multicomponent nature of relaxation. The proposed method for analyzing a single multi-exponential signal (transverse relaxation) was implemented on cartilage. Using the signal, three anatomical zones of cartilage were studied, revealing significant structural differences between them. The proposed method not only avoids the need for sample rotation but also enables repeated application of layer-by-layer magnetic resonance imaging with micron resolution. The study results allow us to suggest that water molecules contributing to the echo decay are more likely located in nanocavities formed by the fibrillar structure rather than inside the fibrils.


Subject(s)
Collagen , Magnetic Resonance Imaging , Nanostructures , Magnetic Resonance Imaging/methods , Nanostructures/chemistry , Collagen/chemistry , Animals , Anisotropy , Cattle
2.
PeerJ Comput Sci ; 9: e1173, 2023.
Article in English | MEDLINE | ID: mdl-37346621

ABSTRACT

Methods of computer-assisted diagnostics that utilize deep learning techniques on recordings of respiratory sounds have been developed to diagnose bronchial asthma. In the course of the study an anonymous database containing audio files of respiratory sound recordings of patients suffering from different respiratory diseases and healthy volunteers has been accumulated and used to train the software and control its operation. The database consists of 1,238 records of respiratory sounds of patients and 133 records of volunteers. The age of tested persons was from 18 months to 47 years. The sound recordings were captured during calm breathing at four points: in the oral cavity, above the trachea, at the chest, the second intercostal space on the right side, and at the point on the back. The developed software provides binary classifications (diagnostics) of the type: "sick/healthy" and "asthmatic patient/non-asthmatic patient and healthy". For small test samples of 50 (control group) to 50 records (comparison group), the diagnostic sensitivity metric of the first classifier was 88%, its specificity metric -86% and accuracy metric -87%. The metrics for the classifier "asthmatic patient/non-asthmatic patient and healthy" were 92%, 82%, and 87%, respectively. The last model applied to analyze 941 records in asthmatic patients indicated the correct asthma diagnosis in 93% of cases. The proposed method is distinguished by the fact that the trained model enables diagnostics of bronchial asthma (including differential diagnostics) with high accuracy irrespective of the patient gender and age, stage of the disease, as well as the point of sound recording. The proposed method can be used as an additional screening method for preclinical bronchial asthma diagnostics and serve as a basis for developing methods of computer assisted patient condition monitoring including remote monitoring and real-time estimation of treatment effectiveness.

3.
Res Sq ; 2023 May 10.
Article in English | MEDLINE | ID: mdl-37214947

ABSTRACT

We have experimentally and theoretically investigated multicomponent 1H nuclear magnetic resonance (NMR) echo decays in a-Si:H films containing anisotropic nanopores, in which randomly moving hydrogen molecules are entrapped. The experimental results are interpreted within the framework of the previously developed theory, in which a nanoporous material is represented as a set of nanopores containing liquid or gas, and the relaxation rate is determined by the dipole-dipole spin interaction, considering the restricted motion of molecules inside the pores. Previously, such characteristics of a nanostructure as the average volume of pores and their orientation distribution were determined from the angular dependences of the spin-spin and spin-lattice relaxation times. We propose a new approach to the analysis of the NMR signal, the main advantage of which is the possibility of obtaining nanostructure parameters from a single decay of the echo signal. In this case, there is no need to analyze the anisotropy of the relaxation time T2, the determination of which is a rather complicated problem in multicomponent decays. Despite multicomponent signals, the fitting parameter associated with the size and shape of nanopores is determined quite accurately. This made it possible to determine the size and shape of nanopores in a-Si:H films, herewith our estimates are in good agreement with the results obtained by other methods. The fitting of the decays also provides information about the nanostructure of the sample, such as the standard deviations of the angular distribution of pores and the polar and azimuthal angles of the average direction of the pore axes relative to the sample axis, with reasonable accuracy. The approach makes it possible to quantitatively determine the parameters of the non-spherical nanoporous structure from NMR data in a non-destructive manner.

4.
J Magn Reson ; 350: 107434, 2023 May.
Article in English | MEDLINE | ID: mdl-37080070

ABSTRACT

The aim of this work is to investigate the nanostructures of nanoporous materials by studying the anisotropy of the nuclear spin-spin and spin-lattice relaxations of the guest molecules trapped in the pores. The nuclear magnetic resonance (NMR) data are analyzed in the framework of the theory of the nuclear relaxation dominated by the dipole-dipole interactions in gas or liquid species contained in nanopores. A distinctive feature of this theory is the establishment of a relationship between the degree of orientation ordering of nanopores in the host matrix and their characteristic volume and the anisotropy of the NMR relaxation times. In this work the complex experimental and theoretical approach was applied to study the nanostructure of hydrogenated amorphous silicon (a-Si:H) films. A feature of this study is the simultaneous investigation of the three (T1, T1ρ, and T2) NMR relaxation times, for the same sample. This allows us to determine not only the degree of orientation ordering of nanopores but also to estimate their size (∼1 nm) and correlation times of the nanopore fluctuations. The obtained results demonstrate that the developed approach is effective in studying details of nanostructure of different nanoporous materials.

5.
J Magn Reson ; 341: 107258, 2022 08.
Article in English | MEDLINE | ID: mdl-35753185

ABSTRACT

This study investigates the fibril nanostructure of fresh celery samples by modeling the anisotropic behavior of the transverse relaxation time (T2) in nuclear magnetic resonance (NMR). Experimental results are interpreted within the framework of a previously developed theory, which was successfully used to model the nanostructures of several biological tissues as a set of water filled nanocavities, hence explaining the anisotropy the T2 relaxation time in vivo. An important feature of this theory is to determine the degree of orientational ordering of the nanocavities, their characteristic volume, and their average direction with respect to the macroscopic sample. Results exhibit good agreement between theory and experimental data, which are, moreover, supported by optical microscopic resolution. The quantitative NMR approach presented herein can be potentially used to determine the internal ordering of biological tissues noninvasively.


Subject(s)
Apium/ultrastructure , Magnetic Resonance Imaging , Microscopy , Plant Stems/anatomy & histology , Anisotropy , Apium/anatomy & histology , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Nanostructures/ultrastructure , Plant Stems/ultrastructure
6.
JMIR Form Res ; 6(7): e31200, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35584091

ABSTRACT

BACKGROUND: Respiratory sounds have been recognized as a possible indicator of behavior and health. Computer analysis of these sounds can indicate characteristic sound changes caused by COVID-19 and can be used for diagnostics of this illness. OBJECTIVE: The aim of the study is to develop 2 fast, remote computer-assisted diagnostic methods for specific acoustic phenomena associated with COVID-19 based on analysis of respiratory sounds. METHODS: Fast Fourier transform (FFT) was applied for computer analysis of respiratory sound recordings produced by hospital doctors near the mouths of 14 patients with COVID-19 (aged 18-80 years) and 17 healthy volunteers (aged 5-48 years). Recordings for 30 patients and 26 healthy persons (aged 11-67 years, 34, 60%, women), who agreed to be tested at home, were made by the individuals themselves using a mobile telephone; the records were passed for analysis using WhatsApp. For hospitalized patients, the illness was diagnosed using a set of medical methods; for outpatients, polymerase chain reaction (PCR) was used. The sampling rate of the recordings was from 44 to 96 kHz. Unlike usual computer-assisted diagnostic methods for illnesses based on respiratory sound analysis, we proposed to test the high-frequency part of the FFT spectrum (2000-6000 Hz). RESULTS: Comparing the FFT spectra of the respiratory sounds of patients and volunteers, we developed 2 computer-assisted methods of COVID-19 diagnostics and determined numerical healthy-ill criteria. These criteria were independent of gender and age of the tested person. CONCLUSIONS: The 2 proposed computer-assisted diagnostic methods, based on the analysis of the respiratory sound FFT spectra of patients and volunteers, allow one to automatically diagnose specific acoustic phenomena associated with COVID-19 with sufficiently high diagnostic values. These methods can be applied to develop noninvasive screening self-testing kits for COVID-19.

7.
J Magn Reson ; 331: 107051, 2021 10.
Article in English | MEDLINE | ID: mdl-34455368

ABSTRACT

We studied the anisotropy of 1H NMR spin-lattice and spin-spin relaxations in a fresh celery stem experimentally and modeled the sample theoretically as the water-containing nano- and micro-cavities. The angular dependence of the spin-lattice and the spin-spin relaxation times was obtained, which clearly shows the presence of water-filled nano- and micro-cavities in the celery stem, which have elongated shapes and are related to non-spherical vascular cells in the stem. To explain the experimental data, we applied the relaxation theory developed by us and used previously to interpret similar effects in liquids in nanocavities located in biological tissues such as cartilages and tendons. Good agreement between the experimental data and theoretical results was obtained by adjusting the fitting parameters. The obtained values of standard deviations (0.33 for the mean polar angle and 0.1 for the mean azimuthal angle) indicate a noticeable ordering of the water-filled nano- and micro-cavities in the celery stem. Our approach allows the use of the NMR technique to experimentally determine the order parameters of the microscopic vascular structures in plants.


Subject(s)
Magnetic Resonance Imaging , Tendons , Anisotropy , Magnetic Resonance Spectroscopy , Plant Stems
8.
J Magn Reson ; 325: 106933, 2021 04.
Article in English | MEDLINE | ID: mdl-33636633

ABSTRACT

We analyze the application of the spin locking method to study the spin dynamics and spin-lattice relaxation of nuclear spins-1/2 in liquids or gases enclosed in a nano-cavity. Two cases are considered: when the amplitude of the radio-frequency field is much greater than the local field acting the nucleus and when the amplitude of the radio-frequency field is comparable or even less than the local field. In these cases, temperatures of two spin reservoirs, the Zeeman and dipole ones, change in different ways: in the first case, temperatures of the Zeeman and dipolar reservoirs reach the common value relatively quickly, and then turn to the lattice temperature; in the second case, at the beginning of the process, these temperatures are equal, and then turn to the lattice temperature with different relaxation times. Good agreement between the obtained theoretical results and the experimental data is achieved by fitting the parameters of the distribution of the orientation of nanocavities. The parameters of this distribution can be used to characterize the fine structure of biological samples, potentially enabling the detection of degradative changes in connective tissues.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Nanostructures/chemistry , Connective Tissue/chemistry , Models, Chemical , Models, Statistical
9.
Hyperfine Interact ; 242(1)2021 Dec.
Article in English | MEDLINE | ID: mdl-35990926

ABSTRACT

The spin-spin relaxation in connective tissues is simulated using a model in which a connective tissue is represented by a set of nanocavities containing H2O-D2O liquid. Collagen fibrils in connective tissues form ordered hierarchical long structures of hydrated nano-cavities with characteristic diameter from 1 nm to several tens of nanometers and length of about 100 nm. We consider influence of the restricted Brownian motion of molecules inside a nano-cavity on spin-spin relaxation. The analytical expression for the transverse time T 2 for H2O-D2O liquid in contained a nanocavity was obtained. We show that the angular dependence of the transverse relaxation rate does not depend on the concentration of D2O. The theoretical results could explain the experimentally observed dependence of the degree of deuteration on the relaxation time T 2. Accounting the orientation distribution of the nanocavities well agreement with the experimental dependence of the relaxation for articular cartilage on the deuteration degree was obtained.

10.
J Magn Reson ; 311: 106669, 2020 02.
Article in English | MEDLINE | ID: mdl-31881481

ABSTRACT

We consider the spin lattice relaxation in bulk liquid and liquid entrapped in a nanocavity. The kinetic equation which describes the spin lattice relaxation is obtained by using the theory of the nonequilibrium state operator. A solution of the kinetic equation gives the quadrature expression for the relaxation time, T1. The calculated relaxation time agrees well with the experimental data. The spin-lattice relaxation time is calculated for nanocavities with a characteristic size much less than 700 nm, with the assumption that the spin-lattice relaxation mechanism is determined by nanocavity fluctuations. The resulting expression shows an explicit dependence of the relaxation time T1 on the volume, density of nuclear spins, and parameters of the cavity (shape and orientation relatively to the applied field). To compare with the experiment on the detection of the anisotropy of the relaxation time, we average the expression that describes the relaxation time over the orientation of the nanocavities relative to the applied magnetic field. The good agreement with the experimental data for fibril tissues was achieved by adjustment of few fitting parameters - the standard deviation, averaged fiber direction, and weight factors - which characterize the ordering of fibrils.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Tendons/diagnostic imaging , Algorithms , Animals , Anisotropy , Cattle , Electromagnetic Fields , Fluid Shifts , Kinetics , Nanoparticles , Tendons/ultrastructure
11.
J Magn Reson ; 299: 66-73, 2019 02.
Article in English | MEDLINE | ID: mdl-30580046

ABSTRACT

Study of the spin-lattice relaxation in the spin-locking state offers important information about atomic and molecular motions, which cannot be obtained by spin lattice relaxation in strong external magnetic fields. The application of this technique for the investigation of the spin-lattice relaxation in biological samples with fibril structures reveals an anisotropy effect for the relaxation time under spin locking, T1ρ. To explain the anisotropy of the spin-lattice relaxation under spin-locking in connective tissue a model which represents a tissue by a set of nanocavities containing water is used. The developed model allows us to estimate the correlation time for water molecular motion in articular cartilage, τc=30µs and the averaged nanocavity volume, V≃5400nm3. Based on the developed model which represents a connective tissue by a set of nanocavities containing water, a good agreement with the experimental data from an articular cartilage and a tendon was demonstrated. The fitting parameters were obtained for each layer in each region of the articular cartilage. These parameters vary with the known anatomic microstructures of the tissue. Through Gaussian distributions to nanocavity directions, we have calculated the anisotropy of the relaxation time under spin locking T1ρ for a human Achilles tendon specimen and an articular cartilage. The value of the fitting parameters obtained at matching of calculation to experimental results can be used in future investigations for characterizing the fine fibril structure of biological samples.


Subject(s)
Connective Tissue/ultrastructure , Electron Spin Resonance Spectroscopy/methods , Achilles Tendon/chemistry , Achilles Tendon/ultrastructure , Algorithms , Anisotropy , Cartilage, Articular/ultrastructure , Connective Tissue/chemistry , Humans , Models, Molecular , Normal Distribution , Tendons/ultrastructure , Water
12.
J Magn Reson ; 270: 7-11, 2016 09.
Article in English | MEDLINE | ID: mdl-27380185

ABSTRACT

Transverse spin-spin relaxation of liquids entrapped in nanocavities with different orientational order is theoretically investigated. Based on the bivariate normal distribution of nanocavities directions, we have calculated the anisotropy of the transverse relaxation time for biological systems, such as collagenous tissues, articular cartilage, and tendon. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant. The calculation results for the transverse relaxation time explain the angular dependence observed in MRI experiments with biological objects. The good agreement with the experimental data is obtained by adjustment of only one parameter which characterizes the disorder in fiber orientations. The relaxation time is correlated with the degree of ordering in biological tissues. Thus, microstructure of the tissues can be revealed from the measurement of relaxation time anisotropy. The clinical significance of the correlation, especially in the detection of damage must be evaluated in a large prospective clinical trials.


Subject(s)
Anisotropy , Cartilage, Articular/diagnostic imaging , Magnetic Resonance Imaging , Tendons/diagnostic imaging , Humans
13.
J Magn Reson ; 263: 71-78, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26773529

ABSTRACT

Spin-spin and spin-lattice relaxations in liquid or gas entrapped in nanosized ellipsoidal cavities with different orientation ordering are theoretically investigated. The model is flexible in order to be applied to explain experimental results in cavities with various forms, from very prolate up to oblate ones, and different degree of ordering of nanocavities. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant, which depends on the form, size, and orientation of the cavity and number of nuclear spins in the cavity. It was shown that the transverse and longitudinal relaxation rates differently depend on the angle between the external magnetic field and cavity main axis. The calculation results for the local dipolar field, transverse and longitudinal relaxation times explain the angular dependencies observed in MRI experiments with biological objects: cartilage and tendon. Microstructure of these tissues can be characterized by the standard deviation of the Gaussian distribution of fibril orientations. The comparison of the theoretical and experimental results shows that the value of the standard deviation obtained at the matching of the calculation to experimental results can be used as a parameter characterizing the disorder in the biological sample.


Subject(s)
Magnetic Resonance Imaging/methods , Algorithms , Anisotropy , Cartilage/anatomy & histology , Electromagnetic Fields , Models, Theoretical , Normal Distribution , Phantoms, Imaging , Spin Labels , Tendons/anatomy & histology
14.
J Magn Reson ; 261: 175-80, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26583530

ABSTRACT

We study the spin-lattice relaxation of the nuclear spins in a liquid or a gas entrapped in nanosized ellipsoidal cavities with paramagnetic impurities. Two cases are considered where the major axes of cavities are in orientational order and isotropically disordered. The evolution equation and analytical expression for spin lattice relaxation time are obtained which give the dependence of the relaxation time on the structural parameters of a nanocavity and the characteristics of a gas or a liquid confined in nanocavities. For the case of orientationally ordered cavities, the relaxation process is exponential. When the nanocavities are isotropically disordered, the time dependence of the magnetization is significantly non-exponential. As shown for this case, the relaxation process is characterized by two time constants. The measurements of the relaxation time, along with the information about the cavity size, allow determining the shape and orientation of the nanocavity and concentration of the paramagnetic impurities.

15.
Solid State Nucl Magn Reson ; 32(3): 71-7, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17931836

ABSTRACT

Amplification of a single-spin state using nuclear magnetic resonance (NMR) techniques in a rotating frame is considered. The main aim is to investigate the efficiency of various schemes for quantum detection. Results of numerical simulation of the time dependence of individual and total nuclear polarizations for 1D, 2D, and 3D configurations of the spin systems are presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...