Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 40(24): 4727-4738, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32354856

ABSTRACT

Decades of research have shown that the NAc is a critical region influencing addiction, mood, and food consumption through its effects on reinforcement learning, motivation, and hedonic experience. Pharmacological studies have demonstrated that inhibition of the NAc shell induces voracious feeding, leading to the hypothesis that the inhibitory projections that emerge from the NAc normally act to restrict feeding. While much of this work has focused on projections to the lateral hypothalamus, the role of NAc projections to the VTA in the control food intake has been largely unexplored. Using a retrograde viral labeling technique and real-time monitoring of neural activity with fiber photometry, we find that medial NAc shell projections to the VTA (mNAc→VTA) are inhibited during food-seeking and food consumption in male mice. We also demonstrate that this circuit bidirectionally controls feeding: optogenetic activation of NAc projections to the VTA inhibits food-seeking and food intake (in both sexes), while optogenetic inhibition of this circuit potentiates food-seeking behavior. Additionally, we show that activity of the NAc to VTA pathway is necessary for adaptive inhibition of food intake in response to external cues. These data provide new insight into NAc control over feeding in mice, and contribute to an emerging literature elucidating the role of inhibitory midbrain feedback within the mesolimbic circuit.SIGNIFICANCE STATEMENT The medial NAc has long been known to control consummatory behavior, with particular focus on accumbens projections to the lateral hypothalamus. Conversely, NAc projections to the VTA have mainly been studied in the context of drug reward. We show that NAc projections to the VTA bidirectionally control food intake, consistent with a permissive role in feeding. Additionally, we show that this circuit is normally inactivated during consumption and food-seeking. Together, these findings elucidate how mesolimbic circuits control food consumption.


Subject(s)
Consummatory Behavior/physiology , Eating/physiology , Nucleus Accumbens/physiology , Ventral Tegmental Area/physiology , Animals , Conditioning, Operant/physiology , Male , Mice , Motor Activity/physiology , Neural Pathways/physiology , Optogenetics , Reward
2.
Biol Psychiatry ; 77(7): 633-41, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25109664

ABSTRACT

BACKGROUND: Neuropeptide Y (NPY) is a hypothalamic neuropeptide that plays a prominent role in feeding and energy homeostasis. Expression of the NPY Y1 receptor (Y1R) is highly concentrated in the nucleus accumbens (Acb), a region important in the regulation of palatable feeding. In this study, we performed a number of experiments to investigate the actions of NPY in the Acb. METHODS: First, we determined caloric intake and food choice after bilateral administration of NPY in the Acb in rats on a free-choice diet of saturated fat, 30% sucrose solution, and standard chow and whether this was mediated by the Y1R. Second, we measured the effect of intra-Acb NPY on neuronal activity using in vivo electrophysiology. Third, we examined co-localization of Y1R with enkephalin and dynorphin neurons and the effect of NPY on preproenkephalin messenger RNA levels in the striatum using fluorescent and radioactive in situ hybridization. Finally, using retrograde tracing, we examined whether NPY neurons in the arcuate nucleus projected to the Acb. RESULTS: In rats on the free-choice, high-fat, high-sugar diet, intra-Acb NPY increased intake of fat, but not sugar or chow, and this was mediated by the Y1R. Intra-Acb NPY reduced neuronal firing, as well as preproenkephalin messenger RNA expression in the striatum. Moreover, Acb enkephalin neurons expressed Y1R and arcuate nucleus NPY neurons projected to the Acb. CONCLUSIONS: NPY reduces neuronal firing in the Acb resulting in increased palatable food intake. Together, our neuroanatomical, pharmacologic, and neuronal activity data support a role and mechanism for intra-Acb NPY-induced fat intake.


Subject(s)
Feeding Behavior/physiology , Neurons/physiology , Neuropeptide Y/metabolism , Nucleus Accumbens/physiology , Action Potentials/physiology , Animals , Arcuate Nucleus of Hypothalamus/anatomy & histology , Arcuate Nucleus of Hypothalamus/physiology , Choice Behavior/drug effects , Choice Behavior/physiology , Corpus Striatum/physiology , Dietary Fats/administration & dosage , Dietary Sucrose/administration & dosage , Dynorphins/metabolism , Eating/drug effects , Eating/physiology , Enkephalins/metabolism , Feeding Behavior/drug effects , Male , Mice, Inbred C57BL , Neurons/cytology , Neurons/drug effects , Nucleus Accumbens/anatomy & histology , Nucleus Accumbens/drug effects , Protein Precursors/metabolism , RNA, Messenger/metabolism , Rats, Wistar , Receptors, Neuropeptide Y/antagonists & inhibitors , Receptors, Neuropeptide Y/metabolism
3.
Front Behav Neurosci ; 8: 108, 2014.
Article in English | MEDLINE | ID: mdl-24744708

ABSTRACT

Optogenetics is an extremely powerful tool for selective neuronal activation/inhibition and dissection of neural circuits. However, a limitation of in vivo optogenetics is that an animal must be tethered to an optical fiber for delivery of light. Here, we describe a new method for in vivo, optogenetic inhibition of neural activity using an internal, animal-generated light source based on firefly luciferase. Two adeno-associated viruses encoding luciferase were tested and both produced concentration-dependent light after administration of the substrate, luciferin. Mice were co-infected with halorhodopsin- and luciferase-expressing viruses in the striatum, and luciferin administration significantly reduced Fos activity compared to control animals infected with halorhodopsin only. Recordings of neuronal activity in behaving animals confirmed that firing was greatly reduced after luciferin administration. Finally, amphetamine-induced locomotor activity was reduced in halorhodopsin/luciferase mice pre-injected with luciferin compared to controls. This demonstrates that virally encoded luciferase is able to generate sufficient light to activate halorhodopsin and suppress neural activity and change behavior. This approach could be used to generate inhibition in response to activation of specific molecular pathways.

SELECTION OF CITATIONS
SEARCH DETAIL