Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Mar Drugs ; 20(11)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36354988

ABSTRACT

Three-dimensional chitinous scaffolds often used in regenerative medicine, tissue engineering, biomimetics and technology are mostly isolated from marine organisms, such as marine sponges (Porifera). In this work, we report the results of the electrochemical isolation of the ready to use chitinous matrices from three species of verongiid demosponges (Aplysina archeri, Ianthella basta and Suberea clavata) as a perfect example of possible morphological and chemical dimorphism in the case of the marine chitin sources. The electrolysis of concentrated Na2SO4 aqueous solution showed its superiority over the chemical chitin isolation method in terms of the treatment time reduction: only 5.5 h for A. archeri, 16.5 h for I. basta and 20 h for the S. clavata sample. Further investigation of the isolated scaffolds by digital microscopy and SEM showed that the electrolysis-supported isolation process obtains chitinous scaffolds with well-preserved spatial structure and it can be competitive to other alternative chitin isolation techniques that use external accelerating factors such as microwave irradiation or atmospheric plasma. Moreover, the infrared spectroscopy (ATR-FTIR) proved that with the applied electrochemical conditions, the transformation into chitosan does not take place.


Subject(s)
Chitin , Porifera , Animals , Chitin/chemistry , Spectroscopy, Fourier Transform Infrared , Porifera/chemistry , Electrolysis
2.
Int J Mol Sci ; 22(22)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34830470

ABSTRACT

Marine sponges were among the first multicellular organisms on our planet and have survived to this day thanks to their unique mechanisms of chemical defense and the specific design of their skeletons, which have been optimized over millions of years of evolution to effectively inhabit the aquatic environment. In this work, we carried out studies to elucidate the nature and nanostructural organization of three-dimensional skeletal microfibers of the giant marine demosponge Ianthella basta, the body of which is a micro-reticular, durable structure that determines the ideal filtration function of this organism. For the first time, using the battery of analytical tools including three-dimensional micro-X-ray Fluorescence (3D-µXRF), X-ray diffraction (XRD), infra-red (FTIR), Raman and Near Edge X-ray Fine Structure (NEXAFS) spectroscopy, we have shown that biomineral calcite is responsible for nano-tuning the skeletal fibers of this sponge species. This is the first report on the presence of a calcitic mineral phase in representatives of verongiid sponges which belong to the class Demospongiae. Our experimental data suggest a possible role for structural amino polysaccharide chitin as a template for calcification. Our study suggests further experiments to elucidate both the origin of calcium carbonate inside the skeleton of this sponge and the mechanisms of biomineralization in the surface layers of chitin microfibers saturated with bromotyrosines, which have effective antimicrobial properties and are responsible for the chemical defense of this organism. The discovery of the calcified phase in the chitinous template of I. basta skeleton is expected to broaden the knowledge in biomineralization science where the calcium carbonate is regarded as a valuable material for applications in biomedicine, environmental science, and even in civil engineering.


Subject(s)
Aquatic Organisms/chemistry , Calcium Carbonate/chemistry , Porifera/chemistry , Skeleton/chemistry , Animals , Biomineralization , Chitin/chemistry , Spectroscopy, Fourier Transform Infrared , Tissue Scaffolds/chemistry , X-Ray Diffraction
3.
Int J Biol Macromol ; 162: 1187-1194, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32615216

ABSTRACT

Studies on the identification, properties and function of chitin in sponges (Porifera), which are recognized as the first multicellular organisms on Earth, continue to be of fundamental scientific interest. The occurrence of chitin has so far been reported in 21 marine sponge species and only in two inhabiting fresh water. In this study, we present the discovery of α-chitin in the endemic demosponge Ochridaspongia rotunda, found in Lake Ohrid, which dates from the Tertiary. The presence of chitin in this species was confirmed using special staining, a chitinase test, FTIR, Raman and NEXAFS spectroscopy, and electrospray ionization mass spectrometry (ESI-MS). In contrast to the case of marine sponges, chitin in O. rotunda has been found only within its holdfast, suggesting a role of chitin in the attachment of the sponge to the hard substratum. Isolated fibrous matter strongly resemble the shape and size of the sponge holdfast with membrane-like structure.


Subject(s)
Chitin/chemistry , Chitin/metabolism , Porifera/chemistry , Porifera/metabolism , Animals
4.
Mar Drugs ; 18(6)2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32498448

ABSTRACT

The development of novel and effective methods for the isolation of chitin, which remains one of the fundamental aminopolysaccharides within skeletal structures of diverse marine invertebrates, is still relevant. In contrast to numerous studies on chitin extraction from crustaceans, mollusks and sponges, there are only a few reports concerning its isolation from corals, and especially black corals (Antipatharia). In this work, we report the stepwise isolation and identification of chitin from Cirrhipathes sp. (Antipatharia, Antipathidae) for the first time. The proposed method, aiming at the extraction of the chitinous scaffold from the skeleton of black coral species, combined a well-known chemical treatment with in situ electrolysis, using a concentrated Na2SO4 aqueous solution as the electrolyte. This novel method allows the isolation of α-chitin in the form of a microporous membrane-like material. Moreover, the extracted chitinous scaffold, with a well-preserved, unique pore distribution, has been extracted in an astoundingly short time (12 h) compared to the earlier reported attempts at chitin isolation from Antipatharia corals.


Subject(s)
Anthozoa/anatomy & histology , Anthozoa/chemistry , Chitin/isolation & purification , Animals , Chitin/chemistry , Electrochemistry
5.
Mar Drugs ; 18(6)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32531909

ABSTRACT

Chitin, as one of nature's most abundant structural polysaccharides, possesses worldwide, high industrial potential and a functionality that is topically pertinent. Nowadays, the metallization of naturally predesigned, 3D chitinous scaffolds originating from marine sponges is drawing focused attention. These invertebrates represent a unique, renewable source of specialized chitin due to their ability to grow under marine farming conditions. In this study, the development of composite material in the form of 3D chitin-based skeletal scaffolds covered with silver nanoparticles (AgNPs) and Ag-bromide is described for the first time. Additionally, the antibacterial properties of the obtained materials and their possible applications as a water filtration system are also investigated.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chitin/chemistry , Escherichia coli/drug effects , Porifera , Animals , Aquatic Organisms , Metal Nanoparticles/chemistry , Silver/chemistry , Structure-Activity Relationship
6.
Biomolecules ; 10(4)2020 04 22.
Article in English | MEDLINE | ID: mdl-32331371

ABSTRACT

For the first time, 3D chitin scaffolds from the marine demosponge Aplysina archeri were used for adsorption and immobilization of laccase from Trametes versicolor. The resulting chitin-enzyme biocatalytic systems were applied in the removal of tetracycline. Effective enzyme immobilization was confirmed by scanning electron microscopy. Immobilization yield and kinetic parameters were investigated in detail, in addition to the activity of the enzyme after immobilization. The designed systems were further used for the removal of tetracycline under various process conditions. Optimum process conditions, enabling total removal of tetracycline from solutions at concentrations up to 1 mg/L, were found to be pH 5, temperature between 25 and 35 °C, and 1 h process duration. Due to the protective effect of the chitinous scaffolds and stabilization of the enzyme by multipoint attachment, the storage stability and thermal stability of the immobilized biomolecules were significantly improved as compared to the free enzyme. The produced biocatalytic systems also exhibited good reusability, as after 10 repeated uses they removed over 90% of tetracycline from solution. Finally, the immobilized laccase was used in a packed bed reactor for continuous removal of tetracycline, and enabled the removal of over 80% of the antibiotic after 24 h of continuous use.


Subject(s)
Aquatic Organisms/chemistry , Chitin/chemistry , Enzymes, Immobilized/metabolism , Laccase/metabolism , Pharmaceutical Preparations/isolation & purification , Porifera/chemistry , Animals , Biocatalysis , Bioreactors , Hydrogen-Ion Concentration , Kinetics , Porifera/ultrastructure , Temperature
7.
Mater Sci Eng C Mater Biol Appl ; 109: 110566, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32228987

ABSTRACT

Marine demosponges of the Verongiida order are considered a gold-mine for bioinspired materials science and marine pharmacology. The aim of this work was to simultaneously isolate selected bromotyrosines and unique chitinous structures from A. aerophoba and to propose these molecules and biomaterials for possible application as antibacterial and antitumor compounds and as ready-to-use scaffolds for cultivation of cardiomyocytes, respectively. Among the extracted bromotyrosines, the attention has been focused on aeroplysinin-1 that showed interesting unexpected growth inhibition properties for some Gram-negative clinical multi-resistant bacterial strains, such as A. baumannii and K. pneumoniae, and on aeroplysinin-1 and on isofistularin-3 for their anti-tumorigenic activity. For both compounds, the effects are cell line dependent, with significant growth inhibition activity on the neuroblastoma cell line SH-SY5Y by aeroplysinin-1 and on breast cancer cell line MCF-7 by isofistularin-3. In this study, we also compared the cultivation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) on the A. aerophoba chitinous scaffolds, in comparison to chitin structures that were pre-coated with Geltrex™, an extracellular matrix mimetic which is used to enhance iPSC-CM adhesion. The iPSC-CMs on uncoated and pure chitin structures started contracting 24 h after seeding, with comparable behaviour observed on Geltrex-coated cell culture plates, confirming the biocompatibility of the sponge biomaterial with this cell type. The advantage of A. aerophoba is that this source organism does not need to be collected in large quantities to supply the necessary amount for further pre-clinical studies before chemical synthesis of the active compounds will be available. A preliminary analysis of marine sponge bioeconomy as a perspective direction for application of biomaterials and secondary bioactive metabolites has been finally performed for the first time.


Subject(s)
Acetonitriles , Alkaloids , Aquatic Organisms/chemistry , Biomimetic Materials , Cyclohexenes , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Porifera/chemistry , Acetonitriles/chemistry , Acetonitriles/pharmacokinetics , Acetonitriles/pharmacology , Alkaloids/chemistry , Alkaloids/pharmacokinetics , Alkaloids/pharmacology , Animals , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacokinetics , Biomimetic Materials/pharmacology , Cell Line, Tumor , Cyclohexenes/chemistry , Cyclohexenes/pharmacokinetics , Cyclohexenes/pharmacology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Humans , Induced Pluripotent Stem Cells/cytology , MCF-7 Cells , Myocytes, Cardiac/cytology
8.
J Environ Manage ; 261: 110218, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32148288

ABSTRACT

Diverse fields of modern environmental technology are nowadays focused on the discovery and development of new sources for oil spill removal. An especially interesting type of sorbents is those of natural origin-biosorbents-as ready-to-use constructs with biodegradable, nontoxic, renewable and cost-efficient properties. Moreover, the growing problem of microplastic-related contamination in the oceans further encourages the use of biosorbents. Here, for the first time, naturally pre-designed molting cuticles of the Theraphosidae spider Avicularia sp. "Peru purple", as part of constituting a large-scale spider origin waste material, were used for efficient sorption of crude oil. Compared with currently used materials, the proposed biosorbent of spider cuticular origin demonstrates excellent ability to remain on the water surface for a long time. In this study the morphology and hydrophobic features of Theraphosidae cuticle are investigated for the first time. The unique surface morphology and very low surface free energy (4.47 ± 0.08 mN/m) give the cuticle-based, tube-like, porous biosorbent excellent oleophilic-hydrophobic properties. The crude oil sorption capacities of A. sp. "Peru purple" molt structures in sea water, distilled water and fresh water were measured at 12.6 g/g, 15.8 g/g and 16.6 g/g respectively. These results indicate that this biomaterial is more efficient than such currently used fibrous sorbents as human hairs or chicken feathers. Four cycles of desorption were performed and confirmed the reusability of the proposed biosorbent. We suggest that the oil adsorption mechanism is related to the brush-like and microporous structure of the tubular spider molting cuticles and may also involve interaction between the cuticular wax layers and crude oil.


Subject(s)
Petroleum Pollution , Petroleum , Spiders , Water Pollutants, Chemical , Adsorption , Animals , Molting , Peru , Plastics
9.
Carbohydr Polym ; 226: 115301, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31582063

ABSTRACT

Diverse fields of modern technology and biomedicine can benefit from the application of ready-to-use chitin-based scaffolds. In this work we show for the first time the applicability of tubular and porous chitin from Caribena versicolor spiders as a scaffold for the development of an effective CuO/Cu(OH)2 catalyst for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AM), and as a scaffold for the tissue engineering of selected cells. The formation of CuO/Cu(OH)2 phases on and within the chitinous tubes leads to a hybrid material with excellent catalytic performance with respect to the reduction of p-nitrophenol. On the other hand, experimental results provide for the first time strong evidence for the biocompatibility of spider chitin with different cell types, a human progenitor cell line (hPheo1), as well as cardiomyocytes differentiated from induced pluripotent stem cells (iPSC-CMs) that were cultured on a tube-like scaffold.


Subject(s)
Arachnida/metabolism , Biomimetic Materials/chemistry , Chitin/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Cells, Cultured , Humans
10.
Mar Drugs ; 17(10)2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31658704

ABSTRACT

Naturally occurring three-dimensional (3D) biopolymer-based matrices that can be used in different biomedical applications are sustainable alternatives to various artificial 3D materials. For this purpose, chitin-based structures from marine sponges are very promising substitutes. Marine sponges from the order Verongiida (class Demospongiae) are typical examples of demosponges with well-developed chitinous skeletons. In particular, species belonging to the family Ianthellidae possess chitinous, flat, fan-like fibrous skeletons with a unique, microporous 3D architecture that makes them particularly interesting for applications. In this work, we focus our attention on the demosponge Ianthella flabelliformis (Linnaeus, 1759) for simultaneous extraction of both naturally occurring ("ready-to-use") chitin scaffolds, and biologically active bromotyrosines which are recognized as potential antibiotic, antitumor, and marine antifouling substances. We show that selected bromotyrosines are located within pigmental cells which, however, are localized within chitinous skeletal fibers of I. flabelliformis. A two-step reaction provides two products: treatment with methanol extracts the bromotyrosine compounds bastadin 25 and araplysillin-I N20 sulfamate, and a subsequent treatment with acetic acid and sodium hydroxide exposes the 3D chitinous scaffold. This scaffold is a mesh-like structure, which retains its capillary network, and its use as a potential drug delivery biomaterial was examined for the first time. The results demonstrate that sponge-derived chitin scaffolds, impregnated with decamethoxine, effectively inhibit growth of the human pathogen Staphylococcus aureus in an agar diffusion assay.


Subject(s)
Aquatic Organisms/chemistry , Chitin/chemistry , Drug Carriers/chemistry , Porifera/chemistry , Tyrosine/analogs & derivatives , Animals , Anti-Bacterial Agents/administration & dosage , Chitin/isolation & purification , Cytoskeleton/chemistry , Decamethonium Compounds/administration & dosage , Drug Carriers/isolation & purification , Hydrocarbons, Brominated/chemistry , Hydrocarbons, Brominated/isolation & purification , Isoxazoles/chemistry , Isoxazoles/isolation & purification , Microbial Sensitivity Tests , Peptides, Cyclic/chemistry , Peptides, Cyclic/isolation & purification , Porifera/cytology , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Tyrosine/chemistry , Tyrosine/isolation & purification
11.
Int J Mol Sci ; 20(20)2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31618840

ABSTRACT

Marine sponges remain representative of a unique source of renewable biological materials. The demosponges of the family Ianthellidae possess chitin-based skeletons with high biomimetic potential. These three-dimensional (3D) constructs can potentially be used in tissue engineering and regenerative medicine. In this study, we focus our attention, for the first time, on the marine sponge Ianthella labyrinthus Bergquist & Kelly-Borges, 1995 (Demospongiae: Verongida: Ianthellidae) as a novel potential source of naturally prestructured bandage-like 3D scaffolds which can be isolated simultaneously with biologically active bromotyrosines. Specifically, translucent and elastic flat chitinous scaffolds have been obtained after bromotyrosine extraction and chemical treatments of the sponge skeleton with alternate alkaline and acidic solutions. For the first time, cardiomyocytes differentiated from human induced pluripotent stem cells (iPSC-CMs) have been used to test the suitability of I. labyrinthus chitinous skeleton as ready-to-use scaffold for their cell culture. Results reveal a comparable attachment and growth on isolated chitin-skeleton, compared to scaffolds coated with extracellular matrix mimetic Geltrex®. Thus, the natural, unmodified I. labyrinthus cleaned sponge skeleton can be used to culture iPSC-CMs and 3D tissue engineering. In addition, I. labyrinthus chitin-based scaffolds demonstrate strong and efficient capability to absorb blood deep into the microtubes due to their excellent capillary effect. These findings are suggestive of the future development of new sponge chitin-based absorbable hemostats as alternatives to already well recognized cellulose-based fabrics.


Subject(s)
Aquatic Organisms/chemistry , Biocompatible Materials/chemistry , Biological Products/chemistry , Porifera/chemistry , Animals , Biological Dressings , Chitin/chemistry , Humans , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds/chemistry
12.
Molecules ; 24(20)2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31623238

ABSTRACT

Chitin, as a fundamental polysaccharide in invertebrate skeletons, continues to be actively investigated, especially with respect to new sources and the development of effective methods for its extraction. Recent attention has been focused on marine crustaceans and sponges; however, the potential of spiders (order Araneae) as an alternative source of tubular chitin has been overlooked. In this work, we focused our attention on chitin from up to 12 cm-large Theraphosidae spiders, popularly known as tarantulas or bird-eating spiders. These organisms "lose" large quantities of cuticles during their molting cycle. Here, we present for the first time a highly effective method for the isolation of chitin from Caribena versicolor spider molt cuticle, as well as its identification and characterization using modern analytical methods. We suggest that the tube-like molt cuticle of this spider can serve as a naturally prefabricated and renewable source of tubular chitin with high potential for application in technology and biomedicine.


Subject(s)
Chitin/chemistry , Chitin/isolation & purification , Spiders/chemistry , Animals , Chemical Fractionation , Microwaves , Molting , Spectrum Analysis
13.
Phys Med Biol ; 61(8): 3084-108, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27008208

ABSTRACT

Preclinical in vivo studies using small animals are essential to develop new therapeutic options in radiation oncology. Of particular interest are orthotopic tumour models, which better reflect the clinical situation in terms of growth patterns and microenvironmental parameters of the tumour as well as the interplay of tumours with the surrounding normal tissues. Such orthotopic models increase the technical demands and the complexity of preclinical studies as local irradiation with therapeutically relevant doses requires image-guided target localisation and accurate beam application. Moreover, advanced imaging techniques are needed for monitoring treatment outcome. We present a novel small animal image-guided radiation therapy (SAIGRT) system, which allows for precise and accurate, conformal irradiation and x-ray imaging of small animals. High accuracy is achieved by its robust construction, the precise movement of its components and a fast high-resolution flat-panel detector. Field forming and x-ray imaging is accomplished close to the animal resulting in a small penumbra and a high image quality. Feasibility for irradiating orthotopic models has been proven using lung tumour and glioblastoma models in mice. The SAIGRT system provides a flexible, non-profit academic research platform which can be adapted to specific experimental needs and therefore enables systematic preclinical trials in multicentre research networks.


Subject(s)
Cone-Beam Computed Tomography/methods , Glioblastoma/radiotherapy , Lung Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Radiotherapy, Image-Guided/methods , Animals , Mice , Movement , Phantoms, Imaging , Rats , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...