Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Oncoimmunology ; 11(1): 2015859, 2022.
Article in English | MEDLINE | ID: mdl-35251769

ABSTRACT

Macrophages are widely distributed innate immune cells that play an indispensable role in a variety of physiologic and pathologic processes, including organ development, host defense, acute and chronic inflammation, solid and hematopoietic cancers. Beyond their inextricable role as conveyors of programmed cell death, we have previously highlighted that caspases exert non-apoptotic functions, especially during the differentiation of monocyte-derived cells in response to CSF-1. Here, we found that non-canonic cleavages of caspases, reflecting their activation, are maintained during IL-4-induced monocyte-derived macrophages polarization. Moreover, Emricasan, a pan-caspase inhibitor that demonstrated promising preclinical activity in various diseases and safely entered clinical testing for the treatment of liver failure, prevents the generation and the anti-inflammatory polarization of monocyte-derived macrophages ex vivo. Interestingly, caspase inhibition also triggered the reprogramming of monocyte-derived cells evidenced by RNA sequencing. Taken together, our findings position Emricasan as a potential alternative to current therapies for reprogramming macrophages in diseases driven by monocyte-derived macrophages.


Subject(s)
Caspases , Macrophages , Caspase Inhibitors/metabolism , Caspase Inhibitors/pharmacology , Caspases/metabolism , Cell Differentiation , Humans , Inflammation/metabolism , Macrophages/metabolism
2.
Cancer Res ; 81(14): 3806-3821, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34099492

ABSTRACT

Overcoming acquired drug resistance is a primary challenge in cancer treatment. Notably, more than 50% of patients with BRAFV600E cutaneous metastatic melanoma (CMM) eventually develop resistance to BRAF inhibitors. Resistant cells undergo metabolic reprogramming that profoundly influences therapeutic response and promotes tumor progression. Uncovering metabolic vulnerabilities could help suppress CMM tumor growth and overcome drug resistance. Here we identified a drug, HA344, that concomitantly targets two distinct metabolic hubs in cancer cells. HA344 inhibited the final and rate-limiting step of glycolysis through its covalent binding to the pyruvate kinase M2 (PKM2) enzyme, and it concurrently blocked the activity of inosine monophosphate dehydrogenase, the rate-limiting enzyme of de novo guanylate synthesis. As a consequence, HA344 efficiently targeted vemurafenib-sensitive and vemurafenib-resistant CMM cells and impaired CMM xenograft tumor growth in mice. In addition, HA344 acted synergistically with BRAF inhibitors on CMM cell lines in vitro. Thus, the mechanism of action of HA344 provides potential therapeutic avenues for patients with CMM and a broad range of different cancers. SIGNIFICANCE: Glycolytic and purine synthesis pathways are often deregulated in therapy-resistant tumors and can be targeted by the covalent inhibitor described in this study, suggesting its broad application for overcoming resistance in cancer.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Carrier Proteins/antagonists & inhibitors , IMP Dehydrogenase/antagonists & inhibitors , Melanoma/drug therapy , Membrane Proteins/antagonists & inhibitors , Ribonucleotides/pharmacology , Skin Neoplasms/drug therapy , Aged , Aminoimidazole Carboxamide/pharmacology , Animals , Cell Line, Tumor , Female , HEK293 Cells , Humans , Melanoma/enzymology , Melanoma/pathology , Mice , Mice, Nude , Random Allocation , Skin Neoplasms/enzymology , Skin Neoplasms/pathology , Thyroid Hormones , Xenograft Model Antitumor Assays , Thyroid Hormone-Binding Proteins , Melanoma, Cutaneous Malignant
4.
Int J Mol Sci ; 21(1)2019 12 25.
Article in English | MEDLINE | ID: mdl-31881723

ABSTRACT

Myelodysplastic syndrome (MDS) defines a group of heterogeneous hematologic malignancies that often progresses to acute myeloid leukemia (AML). The leading treatment for high-risk MDS patients is azacitidine (Aza, Vidaza®), but a significant proportion of patients are refractory and all patients eventually relapse after an undefined time period. Therefore, new therapies for MDS are urgently needed. We present here evidence that acadesine (Aca, Acadra®), a nucleoside analog exerts potent anti-leukemic effects in both Aza-sensitive (OCI-M2S) and resistant (OCI-M2R) MDS/AML cell lines in vitro. Aca also exerts potent anti-leukemic effect on bone marrow cells from MDS/AML patients ex-vivo. The effect of Aca on MDS/AML cell line proliferation does not rely on apoptosis induction. It is also noteworthy that Aca is efficient to kill MDS cells in a co-culture model with human medullary stromal cell lines, that mimics better the interaction occurring in the bone marrow. These initial findings led us to initiate a phase I/II clinical trial using Acadra® in 12 Aza refractory MDS/AML patients. Despite a very good response in one out 4 patients, we stopped this trial because the highest Aca dose (210 mg/kg) caused serious renal side effects in several patients. In conclusion, the side effects of high Aca doses preclude its use in patients with strong comorbidities.


Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Leukemia, Myeloid, Acute/drug therapy , Myelodysplastic Syndromes/drug therapy , Ribonucleosides/therapeutic use , Aged , Aminoimidazole Carboxamide/pharmacology , Aminoimidazole Carboxamide/therapeutic use , Apoptosis/drug effects , Azacitidine/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Clinical Trials as Topic , Drug Resistance, Neoplasm/drug effects , Female , Humans , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Myelodysplastic Syndromes/pathology , Recurrence , Ribonucleosides/pharmacology , Treatment Failure
5.
Leukemia ; 33(6): 1501-1513, 2019 06.
Article in English | MEDLINE | ID: mdl-30607021

ABSTRACT

Chaperone-mediated autophagy (CMA) is a highly selective form of autophagy. During CMA, the HSC70 chaperone carries target proteins endowed with a KFERQ-like motif to the lysosomal receptor LAMP2A, which then translocate them into lysosomes for degradation. In the present study, we scrutinized the mechanisms underlying the response and resistance to Azacytidine (Aza) in MDS/AML cell lines and bone marrow CD34+ blasts from MDS/AML patients. In engineered Aza-resistant MDS cell lines and some AML cell lines, we identified a profound defect in CMA linked to the absence of LAMP2A. LAMP2 deficiency was responsible for Aza resistance and hypersensitivity to lysosome and autophagy inhibitors. Accordingly, gain of function of LAMP2 in deficient cells or loss of function in LAMP2-expressing cells rendered them sensitive or resistant to Aza, respectively. A strict correlation was observed between the absence of LAMP2, resistance to Aza and sensitivity to lysosome inhibitors. Low levels of LAMP2 expression in CD34+ blasts from MDS/AML patients correlated with lack of sensitivity to Aza and were predictive of poor overall survival. We propose that CD34+/LAMP2Low patients at diagnosis or who become CD34+/LAMP2Low during the course of treatment with Aza might benefit from a lysosome inhibitor already used in the clinic.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Azacitidine/pharmacology , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Leukemia, Myeloid, Acute/pathology , Lysosomal-Associated Membrane Protein 2/metabolism , Aged , Aged, 80 and over , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Female , Follow-Up Studies , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Lysosomal-Associated Membrane Protein 2/genetics , Male , Middle Aged , Prognosis , Survival Rate , Tumor Cells, Cultured
6.
Oncotarget ; 9(13): 10920-10933, 2018 Feb 16.
Article in English | MEDLINE | ID: mdl-29541386

ABSTRACT

Polo-like kinases (Plks) define a highly conserved family of Ser/Thr kinases with crucial roles in the regulation of cell division. Here we show that Plk1 is cleaved by caspase 3, but not by other caspases in different hematopoietic cell lines treated with competitive inhibitors of the ATP-binding pocket of Plk1. Intriguingly, Plk1 was not cleaved in cells treated with Rigosertib, a non-competitive inhibitor of Plk1, suggesting that binding of the inhibitor to the ATP binding pocket of Plk1 triggers a conformational change and unmasks a cryptic caspase 3 cleavage site on the protein. Cleavage occurs after Asp-404 in a DYSD/K sequence and separates the kinase domain from the two PBDs of Plk1. All Plk1 inhibitors triggered G2/M arrest, activation of caspases 2 and 3, polyploidy, multiple nuclei and mitotic catastrophe, albeit at higher concentrations in the case of Rigosertib. Upon BI-2536 treatment, Plk1 cleavage occurred only in the cytosolic fraction and cleaved Plk1 accumulated in this subcellular compartment. Importantly, the cleaved N-Terminal fragment of Plk1 exhibited a higher enzymatic activity than its non-cleaved counterpart and accumulated into the cytoplasm conversely to the full length and the C-Terminal Plk1 fragments that were found essentially into the nucleus. Finally, the DYSD/K cleavage site was highly conserved during evolution from c. elegans to human. In conclusion, we described herein for the first time a specific cleavage of Plk1 by caspase 3 following treatment of cancer cells with ATP-competitive inhibitors of Plk1.

7.
Sci Rep ; 8(1): 256, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29321503

ABSTRACT

CSF-1 and IL-34 share the CSF-1 receptor and no differences have been reported in the signaling pathways triggered by both ligands in human monocytes. IL-34 promotes the differentiation and survival of monocytes, macrophages and osteoclasts, as CSF-1 does. However, IL-34 binds other receptors, suggesting that differences exist in the effect of both cytokines. In the present study, we compared the differentiation and polarization abilities of human primary monocytes in response to CSF-1 or IL-34. CSF-1R engagement by one or the other ligands leads to AKT and caspase activation and autophagy induction through expression and activation of AMPK and ULK1. As no differences were detected on monocyte differentiation, we investigated the effect of CSF-1 and IL-34 on macrophage polarization into the M1 or M2 phenotype. We highlighted a striking increase in IL-10 and CCL17 secretion in M1 and M2 macrophages derived from IL-34 stimulated monocytes, respectively, compared to CSF-1 stimulated monocytes. Variations in the secretome induced by CSF-1 or IL-34 may account for their different ability to polarize naïve T cells into Th1 cells. In conclusion, our findings indicate that CSF-1 and IL-34 exhibit the same ability to induce human monocyte differentiation but may have a different ability to polarize macrophages.


Subject(s)
Cell Differentiation , Interleukins/metabolism , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/cytology , Macrophages/metabolism , Cell Differentiation/drug effects , Humans , Interleukins/pharmacology , Macrophage Activation/drug effects , Macrophage Activation/genetics , Macrophage Activation/immunology , Macrophage Colony-Stimulating Factor/pharmacology , Macrophages/immunology , Monocytes/drug effects , Monocytes/immunology , Monocytes/metabolism , Signal Transduction/drug effects
8.
J Med Chem ; 60(4): 1523-1533, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28094938

ABSTRACT

A series of nucleoside analogues bearing a 1,4,5-trisubstituted-1,2,3-triazole aglycone was synthesized using a straightforward click/electrophilic addition or click/oxidative coupling tandem procedures. SAR analysis, using cell culture assays, led to the discovery of a series of compounds belonging to the 5-alkynyl-1,2,3-triazole family that exhibits potent antileukemic effects on several hematologic malignancies including chronic myeloid leukemia (CML) and myelodysplastic syndromes (MDS) either sensitive or resistant to their respective therapy. Compound 4a also proved efficient in vivo on mice xenografted with SKM1-R MDS cell line. Additionally, some insights in its mode of action revealed that this compound induced cell death by caspase and autophagy induction.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Glycosides/chemistry , Glycosides/pharmacology , Leukemia, Myeloid/drug therapy , Myelodysplastic Syndromes/drug therapy , Animals , Antineoplastic Agents/therapeutic use , Autophagy/drug effects , Cell Line, Tumor , Drug Resistance, Neoplasm , Female , Glycosides/therapeutic use , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Mice, Nude , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/therapeutic use , Tumor Cells, Cultured
9.
Oncotarget ; 7(18): 26120-36, 2016 May 03.
Article in English | MEDLINE | ID: mdl-27027430

ABSTRACT

Differentiation-inducing factor (DIF) defines a group of chlorinated hexaphenones that orchestrate stalk-cell differentiation in the slime mold Dictyostelium discoideum (DD). DIF-1 and 3 have also been reported to have tumor inhibiting properties; however, the mechanisms that underlie the effects of these compounds remain poorly defined. Herein, we show that DIF-3 rapidly triggers Ca2+ release and a loss of mitochondrial membrane potential (MMP) in the absence of cytochrome c and Smac release and without caspase activation. Consistently with these findings, we also detected no evidence of apoptosis in cells treated with DIF-3 but instead found that this compound induced autophagy. In addition, DIF-3 promoted mitochondrial fission in K562 and HeLa cells, as assessed by electron and confocal microscopy analysis. Importantly, DIF-3 mediated the phosphorylation and redistribution of dynamin-related protein 1 (DRP1) from the cytoplasmic to the microsomal fraction of K562 cells. Pharmacological inhibition or siRNA silencing of DRP1 not only inhibited mitochondrial fission but also protected K562 cells from DIF-3-mediated cell death. Furthermore, DIF-3 potently inhibited the growth of imatinib-sensitive and imatinib-resistant K562 cells. It also inhibited tumor formation in athymic mice engrafted with an imatinib-resistant CML cell line. Finally, DIF-3 exhibited a clear selectivity toward CD34+ leukemic cells from CML patients, compared with CD34- cells. In conclusion, we show that the potent anti-leukemic effect of DIF-3 is mediated through the induction of mitochondrial fission and caspase-independent cell death. Our findings may have important therapeutic implications, especially in the treatment of tumors that exhibit defects in apoptosis regulation.


Subject(s)
Apoptosis/drug effects , GTP Phosphohydrolases/metabolism , Gene Expression Regulation, Leukemic/drug effects , Hexanones/pharmacology , Leukemia/pathology , Microtubule-Associated Proteins/metabolism , Mitochondrial Dynamics/drug effects , Mitochondrial Proteins/metabolism , Reactive Oxygen Species/metabolism , Animals , Biomarkers, Tumor/metabolism , Caspases/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Dynamins , Female , Humans , K562 Cells , Leukemia/drug therapy , Leukemia/metabolism , Mice , Mice, Nude , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Phosphorylation/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...