Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Am J Physiol Renal Physiol ; 326(5): F727-F736, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38511219

ABSTRACT

Although obesity is recognized as a risk factor for cardiorenal and metabolic diseases, the impact of parental obesity on the susceptibility of their offspring to renal injury at adulthood is unknown. We examined the impact of parental obesity on offspring kidney function, morphology, and markers of kidney damage after acute kidney injury (AKI). Offspring from normal (N) diet-fed C57BL/6J parents were fed either N (NN) or a high-fat (H) diet (NH) from weaning until adulthood. Offspring from obese H diet-fed parents were fed N (HN) or H diet (HH) after weaning. All offspring groups were submitted to bilateral AKI by clamping the left and right renal pedicles for 30 min. Compared with male NH and NN offspring from lean parents, male HH and HN offspring from obese parents exhibited higher kidney injury markers such as urinary, renal osteopontin, plasma creatinine, urinary albumin excretion, and neutrophil gelatinase-associated lipocalin (NGAL) levels, and worse histological injury score at 22 wk of age. Only albumin excretion and NGAL were elevated in female HH offspring from obese parents compared with lean and obese offspring from lean parents. We also found an increased mortality rate and worse kidney injury scores after AKI in male offspring from obese parents, regardless of the diet consumed after weaning. Female offspring were protected from major kidney injury after AKI. These results indicate that parental obesity leads to increased kidney injury in their offspring after ischemia-reperfusion in a sex-dependent manner, even when their offspring remain lean.NEW & NOTEWORTHY Offspring from obese parents are more susceptible to kidney injury and worse outcomes following an acute ischemia-reperfusion insult. Male, but not female, offspring from obese parents exhibit increased blood pressure early in life. Female offspring are partially protected against major kidney injury induced by ischemia-reperfusion.


Subject(s)
Acute Kidney Injury , Kidney , Mice, Inbred C57BL , Reperfusion Injury , Animals , Male , Female , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Acute Kidney Injury/physiopathology , Acute Kidney Injury/pathology , Kidney/physiopathology , Kidney/pathology , Kidney/metabolism , Sex Factors , Obesity/complications , Obesity/physiopathology , Diet, High-Fat , Pregnancy , Lipocalin-2/metabolism , Obesity, Maternal/metabolism , Obesity, Maternal/complications , Obesity, Maternal/physiopathology , Prenatal Exposure Delayed Effects , Mice , Risk Factors , Disease Models, Animal , Biomarkers/blood
2.
JBMR Plus ; 7(3): e10727, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36936360

ABSTRACT

Advanced glycation end products (AGEs) accumulation may be involved in the progression of CKD-bone disorders. We sought to determine the relationship between AGEs measured in the blood, skin, and bone with histomorphometry parameters, bone protein, gene expression, and serum biomarkers of bone metabolism in patients with CKD stages 3 to 5D patients. Serum levels of AGEs were estimated by pentosidine, glycated hemoglobin (A1c), and N-carboxymethyl lysine (CML). The accumulation of AGEs in the skin was estimated from skin autofluorescence (SAF). Bone AGEs accumulation and multiligand receptor for AGEs (RAGEs) expression were evaluated by immunohistochemistry; bone samples were used to evaluate protein and gene expression and histomorphometric analysis. Data are from 86 patients (age: 51 ± 13 years; 60 [70%] on dialysis). Median serum levels of pentosidine, CML, A1c, and SAF were 71.6 pmol/mL, 15.2 ng/mL, 5.4%, and 3.05 arbitrary units, respectively. AGEs covered 3.92% of trabecular bone and 5.42% of the cortical bone surface, whereas RAGEs were expressed in 0.7% and 0.83% of trabecular and cortical bone surfaces, respectively. AGEs accumulation in bone was inversely related to serum receptor activator of NF-κB ligand/parathyroid hormone (PTH) ratio (R = -0.25; p = 0.03), and RAGE expression was negatively related to serum tartrate-resistant acid phosphatase-5b/PTH (R = -0.31; p = 0.01). Patients with higher AGEs accumulation presented decreased bone protein expression (sclerostin [1.96 (0.11-40.3) vs. 89.3 (2.88-401) ng/mg; p = 0.004]; Dickkopf-related protein 1 [0.064 (0.03-0.46) vs. 1.36 (0.39-5.87) ng/mg; p = 0.0001]; FGF-23 [1.07 (0.4-32.6) vs. 44.1 (6-162) ng/mg; p = 0.01]; and osteoprotegerin [0.16 (0.08-2.4) vs. 6.5 (1.1-23.7) ng/mg; p = 0.001]), upregulation of the p53 gene, and downregulation of Dickkopf-1 gene expression. Patients with high serum A1c levels presented greater cortical porosity and Mlt and reduced osteoblast surface/bone surface, eroded surface/bone surface, osteoclast surface/bone surface, mineral apposition rate, and adjusted area. Cortical thickness was negatively correlated with serum A1c (R = -0.28; p = 0.02) and pentosidine levels (R = -0.27; p = 0.02). AGEs accumulation in the bone of CKD patients was related to decreased bone protein expression, gene expression changes, and increased skeletal resistance to PTH; A1c and pentosidine levels were related to decreased cortical thickness; and A1c levels were related to increased cortical porosity and Mlt. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

3.
PLoS One ; 12(5): e0177086, 2017.
Article in English | MEDLINE | ID: mdl-28481921

ABSTRACT

This study investigated the influence of sodium restriction and antihypertensive drugs on atherogenesis utilizing hypertensive (H) low-density lipoprotein-receptor knockout mice treated or not with losartan (Los) or hydralazine (Hyd) and fed low-sodium (LS) or normal-sodium (NS) chow. Despite reducing the blood pressure (BP) of H-LS mice, the LS diet caused arterial lipid infiltration due to increased plasma total cholesterol (TC) and triglycerides (TG). Los and Hyd reduced the BP of H-LS mice, and Los effectively prevented arterial injury, likely by reducing plasma TG and nonesterified fatty acids. Aortic lipid infiltration was lower in Los-treated H-LS mice (H-LS+Los) than in normotensive (N)-LS and H-LS mice. Aortic angiotensin II type 1 (AT1) receptor content was greater in H-NS than H-LS mice and in H-LS+Hyd than H-LS+Los mice. Carboxymethyl-lysine (CML) and receptor for advanced glycation end products (RAGE) immunostaining was greater in H-LS than H-NS mice. CML and RAGE levels were lower in LS animals treated with antihypertensive drugs, and Hyd enhanced the AT1 receptor level. Hyd also increased the gene expression of F4/80 but not tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, IL-10, intercellular adhesion molecule-1 or cluster of differentiation 66. The novelty of the current study is that in a murine model of simultaneous hypertension and hyperlipidemia, the pleiotropic effect of chronic, severe sodium restriction elicited aortic damage even with reduced BP. These negative effects on the arterial wall were reduced by AT1 receptor antagonism, demonstrating the influence of angiotensin II in atherogenesis induced by a severely LS diet.


Subject(s)
Atherosclerosis/etiology , Blood Pressure , Diet, Sodium-Restricted , Hyperlipidemias/complications , Hypertension/prevention & control , Animals , Hypertension/complications , Mice , Mice, Knockout , Receptors, LDL/genetics
4.
Physiol Behav ; 154: 68-75, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26596702

ABSTRACT

A low-salt (LS) diet during pregnancy has been linked to insulin resistance in adult offspring, at least in the experimental setting. However, it remains unclear if this effect is due to salt restriction during early or late pregnancy. To better understand this phenomenon, 12-week-old female Wistar rats were fed a LS or normal-salt (NS) diet during gestation or a LS diet during either the first (LS10) or second (LS20) half of gestation. Glucose tolerance test, HOMA-IR, gene expression analysis and DNA methylation measurements were conducted for the Insr, Igf1, Igf1r, Ins1 and Ins2 genes in the livers of neonates and in the liver, white adipose tissue and muscle of 20-week-old male offspring. Birth weight was lower in the LS20 and LS animals compared with the NS and LS10 rats. In the liver, the Igf1 levels in the LS10, LS20 and LS neonates were lower than those in the NS neonates. Methylation of the Insr, Igf1r, Ins1 and Ins2 genes was influenced in a variable manner by low salt intake during pregnancy. Increased liver Igf1 methylation was observed in the LS and LS20 neonates compared with their NS and LS10 counterparts. Glucose intolerance was observed in adult offspring as an effect of low salt intake over the duration of pregnancy. Compared to the NS animals, the HOMA-IR was higher in the 12-week-old LS and 20-week-old LS-10 rats. Based on these results, it appears that the reason a LS diet during pregnancy induces a low birth weight is its negative correlation with Igf1 DNA methylation in neonates.


Subject(s)
Blood Glucose/drug effects , DNA Methylation/physiology , Gene Expression Regulation, Developmental/drug effects , Insulin-Like Growth Factor I/genetics , Prenatal Exposure Delayed Effects/physiopathology , Sodium Chloride, Dietary/pharmacology , Age Factors , Animals , Animals, Newborn , DNA Methylation/drug effects , Diet, Sodium-Restricted , Fasting/blood , Female , Glucose Tolerance Test , Infant, Low Birth Weight , Insulin-Like Growth Factor I/metabolism , Male , Pregnancy , Rats , Rats, Wistar , Statistics, Nonparametric
5.
Toxicol Lett ; 232(2): 475-80, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25481569

ABSTRACT

This study aimed to verify the development of placental and systemic inflammation in rats exposed to fine particulate matter before or during pregnancy. Wistar rats were exposed to filtered air (control) or to a load of 600 µg/m(3) of fine particles in the air. The gene expression of IL-1ß, IL-4, IL-6, IL-10, INF-γ, TNF-α and Toll-like receptor 4 in the placenta was evaluated. The serum and placental concentrations of IL-1ß, IL-4, IL-6, IL-10, INF-γ and TNF-α were measured. The total and differential blood leukocyte and blood platelet count was assessed. Compared to control animals, IL-4 content was elevated in the fetal portion of the placenta in rats exposed to air pollution before and during pregnancy. Increased IL-4 suggests that a placental inflammatory reaction may have occurred in response to exposure to fine particulate matter and that this cytokine was responsible, among possibly others factors, for resolution of the inflammatory reaction.


Subject(s)
Air Pollutants/toxicity , Fetus/metabolism , Interleukin-4/metabolism , Particulate Matter/toxicity , Placenta/metabolism , Animals , Blood Cell Count , Female , Fetus/drug effects , Gene Expression/drug effects , Inhalation Exposure , Particle Size , Placenta/drug effects , Pregnancy , Rats , Rats, Wistar
6.
J Nutr ; 144(10): 1571-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25122644

ABSTRACT

Many studies have shown that risk factors that are independent of blood pressure (BP) can contribute to the development of cardiac hypertrophy (CH). Among these factors, high-salt (HS) intake was prominent. Although some studies have attempted to elucidate the role of salt in the development of this disease, the mechanisms by which salt acts are not yet fully understood. Thus, the aim of this study was to better understand the mechanisms of CH and interstitial fibrosis (IF) caused by HS intake. Male Wistar rats were divided into 5 groups according to diet [normal salt (NS; 1.27% NaCl) or HS (8% NaCl)] and treatment [losartan (LOS) (HS+LOS group), hydralazine (HZ) (HS+HZ group), or N-acetylcysteine (NAC) (HS+NAC group)], which was given in the drinking water. Tail-cuff BP, transverse diameter of the cardiomyocyte, IF, angiotensin II type 1 receptor (AT1) gene and protein expression, serum aldosterone, cardiac angiotensin II, cardiac thiobarbituric acid-reactive substances, and binding of conformation-specific anti-AT1 and anti-angiotensin II type 2 receptor (AT2) antibodies in the 2 ventricles were measured. Based on the left ventricle transverse diameter data, the primary finding was the occurrence of significant BP-independent CH in the HS+HZ group (96% of the HS group) and a partial or total prevention of such hypertrophy via treatment with NAC or LOS (81% and 67% of the HS group, respectively). The significant total or partial prevention of IF using all 3 treatments (HS+HZ, 27%; HS+LOS, 27%; and HS+NAC, 58% of the HS group, respectively), and an increase in the AT1 gene and protein expression and activity in groups that developed CH, confirmed that CH occurred via the AT1 in this experimental model. Thus, this study unveiled some relevant previously unknown mechanisms of CH induced by chronic HS intake in Wistar rats. The link of oxidative stress with CH in our experimental model is very interesting and stimulates further evaluation for its full comprehension.


Subject(s)
Cardiomegaly/pathology , Myocytes, Cardiac/drug effects , Receptor, Angiotensin, Type 1/metabolism , Sodium Chloride, Dietary/adverse effects , Acetylcysteine/pharmacology , Aldosterone/blood , Angiotensin II/metabolism , Animals , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Body Weight , Cardiomegaly/chemically induced , Cardiomegaly/genetics , Heart Rate , Hematocrit , Hydralazine/pharmacology , Losartan/pharmacology , Male , Myocytes, Cardiac/metabolism , Potassium/blood , Potassium/urine , Rats , Rats, Wistar , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 2/genetics , Receptor, Angiotensin, Type 2/metabolism , Renin-Angiotensin System/drug effects , Sodium/blood , Sodium/urine , Sodium Chloride, Dietary/administration & dosage , Thiobarbituric Acid Reactive Substances/metabolism
7.
Life Sci ; 90(19-20): 785-92, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22521760

ABSTRACT

AIMS: The goal of the current study was to evaluate the impact of maternal sodium intake during gestation on the systemic and renal renin-angiotensin-aldosterone-system (RAAS) of the adult offspring. MAIN METHODS: Female Wistar rats were fed high- (HSD-8.0% NaCl) or normal-sodium diets (NSD-1.3% NaCl) from 8 weeks of age until the delivery of their first litter. After birth, the offspring received NSD. Tail-cuff blood pressure (TcBP) was measured in the offspring between 6 and 12 weeks of age. At 12 weeks of age, the offspring were subjected to either one week of HSD or low sodium diet (LSD-0.16% NaCl) feeding to evaluate RAAS responsiveness or to acute saline overload to examine sodium excretory function. Plasma (PRA) and renal renin content (RRC), serum aldosterone (ALDO) levels, and renal cortical and medullary renin mRNA expression levels were evaluated at the end of the study. KEY FINDINGS: TcBP was higher among dams fed HSD, but no TcBP differences were observed among the offspring. Male offspring, however, exhibited increased TcBP after one week of HSD feeding, and this effect was independent of maternal diet. Increased RAAS responsiveness to the HSD and LSD was also observed in male offspring. The baseline levels of PRA, ALDO, and cortical and medullary renin gene expression were lower but the RRC levels were higher among HSD-fed male offspring (HSDoff). Conversely, female HSDoff showed reduced sodium excretion 4 h after saline overload compared with female NSDoff. SIGNIFICANCE: High maternal sodium intake is associated with gender-specific changes in RAAS responsiveness among adult offspring.


Subject(s)
Prenatal Exposure Delayed Effects , Renin-Angiotensin System/drug effects , Sodium, Dietary/pharmacology , Aging/physiology , Aldosterone/blood , Animals , Blood Pressure/drug effects , Body Weight/drug effects , Diet , Female , Hematocrit , Kidney/drug effects , Kidney/metabolism , Kidney Cortex/metabolism , Kidney Medulla/metabolism , Male , Polymerase Chain Reaction , Pregnancy , RNA, Messenger/biosynthesis , Rats , Renin/biosynthesis , Renin/metabolism , Sex Characteristics , Sodium/blood , Sodium/urine
8.
J Nutr ; 140(10): 1742-51, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20724490

ABSTRACT

High salt intake is a known cardiovascular risk factor and is associated with cardiac alterations. To better understand this effect, male Wistar rats were fed a normal (NSD: 1.3% NaCl), high 4 (HSD4: 4%), or high 8 (HSD8: 8%) salt diet from weaning until 18 wk of age. The HSD8 group was subdivided into HSD8, HSD8+HZ (15 mg . kg(-1) . d(-1) hydralazine in the drinking water), and HSD8+LOS (20 mg . kg(-1) . d(-1) losartan in the drinking water) groups. The cardiomyocyte diameter was greater in the HSD4 and HSD8 groups than in the HSD8+LOS and NSD groups. Interstitial fibrosis was greater in the HSD4 and HSD8 groups than in the HSD8+HZ and NSD groups. Hydralazine prevented high blood pressure (BP) and fibrosis, but not cardiomyocyte hypertrophy. Losartan prevented high BP and cardiomyocyte hypertrophy, but not fibrosis. Angiotensin II type 1 receptor (AT(1)) protein expression in both ventricles was greater in the HSD8 group than in the NSD group. Losartan, but not hydralazine, prevented this effect. Compared with the NSD group, the binding of an AT(1) conformation-specific antibody that recognizes the activated form of the receptor was lower in both ventricles in all other groups. Losartan further lowered the binding of the anti-AT(1) antibody in both ventricles compared with all other experimental groups. Angiotensin II was greater in both ventricles in all groups compared with the NSD group. Myocardial structural alterations in response to HSD are independent of the effect on BP. Salt-induced cardiomyocyte hypertrophy and interstitial fibrosis possibly are due to different mechanisms. Evidence from the present study suggests that salt-induced AT(1) receptor internalization is probably due to angiotensin II binding.


Subject(s)
Blood Pressure/physiology , Cardiomegaly/chemically induced , Cardiomegaly/physiopathology , Myocardium/pathology , Sodium Chloride, Dietary/administration & dosage , Aldosterone/blood , Angiotensin II/analysis , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Animals , Antihypertensive Agents/administration & dosage , Cardiomegaly/pathology , Collagen Type I/analysis , Collagen Type III/analysis , Disease Models, Animal , Drinking , Eating , Echocardiography , Fibrosis , Gene Expression , Heart Ventricles/chemistry , Heart Ventricles/pathology , Hydralazine/administration & dosage , Hypertension/physiopathology , Hypertension/prevention & control , Losartan/administration & dosage , Male , Potassium/blood , Rats , Rats, Wistar , Receptor, Angiotensin, Type 1/analysis , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/physiology , Receptor, Angiotensin, Type 2/analysis , Renin/blood , Renin-Angiotensin System/genetics , Renin-Angiotensin System/physiology , Sodium/blood , Sodium/urine , Transforming Growth Factor beta/analysis , Urine
9.
Life Sci ; 82(13-14): 728-32, 2008 Mar 26.
Article in English | MEDLINE | ID: mdl-18289603

ABSTRACT

Low birth weight has been associated with increased obesity in adulthood. It has been shown that dietary salt restriction during intrauterine life induces low birth weight and insulin resistance in adult Wistar rats. The present study had a two-fold objective: to evaluate the effects that low salt intake during pregnancy and lactation has on the amount and distribution of adipose tissue; and to determine whether the phenotypic changes in fat mass in this model are associated with alterations in the activity of the renin-angiotensin system. Maternal salt restriction was found to reduce birth weight in male and female offspring. In adulthood, the female offspring of dams fed the low-salt diet presented higher adiposity indices than those seen in the offspring of dams fed a normal-salt diet. This was attributed to the fact that adipose tissue mass (retroperitoneal but not gonadal, mesenteric or inguinal) was greater in those rats than in the offspring of dams fed a normal diet. The adult offspring of dams fed the low-salt diet, compared to those dams fed a normal-salt diet, presented the following: plasma leptin levels higher in males and lower in females; plasma renin activity higher in males but not in females; and no differences in body weight, mean arterial blood pressure or serum angiotensin-converting enzyme activity. Therefore, low salt intake during pregnancy might lead to the programming of obesity in adult female offspring.


Subject(s)
Adiposity/physiology , Diet, Sodium-Restricted/adverse effects , Prenatal Exposure Delayed Effects/etiology , Adipose Tissue/growth & development , Animals , Blood Pressure/physiology , Female , Leptin/blood , Male , Pregnancy , Prenatal Exposure Delayed Effects/enzymology , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/physiopathology , Rats , Rats, Wistar , Renin/blood , Renin/metabolism , Renin-Angiotensin System/physiology , Sex Factors , Sodium Chloride, Dietary/administration & dosage
10.
Am J Med Sci ; 331(6): 309-14, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16775437

ABSTRACT

BACKGROUND: Salt restriction is recommended for hypertension treatment to reduce blood pressure, but its effect on some risk factors is still a matter of discussion. The aim of this study was to observe the effect of a long period of salt restriction or overload on blood pressure, left ventricular mass (LVM), kidney mass (KM), glucose tolerance, and plasma insulin. METHODS: Male Wistar rats were fed from weaning with a low-salt diet (LSD) or a high-salt diet (HSD) until 72 weeks of age. After 48 weeks, the diets were changed in half of the rats: HSD until 48 weeks and then LSD (LHSD) and LSD until 48 weeks and then HSD (HLSD). Body weight, blood pressure, electrolyte excretion, creatinine clearance, plasma renin activity, LVM, KM, and intravenous glucose tolerance test with insulin determinations were evaluated. RESULTS: Blood pressure, LVM and KM were higher on the HSD than on the LSD. Blood pressure was lower on the LHSD than on the HLSD. There were no differences in LVM and KM on the LHSD compared with the HLSD. The relationship between area under the curve (AUC) of insulin and glucose during the intravenous glucose tolerance test was higher on the LSD. No differences were detected in AUC between the two groups of rats whose diet were inverted with 48 weeks of age. CONCLUSIONS: A chronic HSD increases blood pressure, LVM, and KM and a chronic LSD increases plasma insulin in response to a glucose challenge in aging rats. The hypotensive effect of salt restriction is not modified by a previous long period on a HSD.


Subject(s)
Blood Pressure/drug effects , Diet, Sodium-Restricted , Heart/drug effects , Insulin/blood , Sodium Chloride, Dietary/administration & dosage , Sodium Chloride, Dietary/pharmacology , Aging/metabolism , Aging/pathology , Animals , Area Under Curve , Body Weight , Glucose Tolerance Test , Heart Ventricles/drug effects , Insulin Resistance , Kidney/drug effects , Male , Myocardium/pathology , Rats , Rats, Wistar , Renin/blood
11.
Nutr Metab Cardiovasc Dis ; 16(2): 148-55, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16487915

ABSTRACT

OBJECTIVE: To get some additional insight on the mechanisms of the effect of salt intake on body weight. DESIGN AND METHODS: Rats were fed a low (LSD), normal (NSD), or high (HSD) salt diet. In a first set, body weight, tail-cuff blood pressure, fasting plasma thyroid-stimulating hormone, triiodothyronine, L-thyroxine, glucose, insulin, and angiotensin II were measured. Angiotensin II content was determined in white and brown adipose tissues. Uncoupling protein 1 expression was measured in brown adipose tissue. In a second set, body weight, food intake, energy balance, and plasma leptin were determined. In a third set of rats, motor activity and body weight were evaluated. RESULTS: Blood pressure increased on HSD. Body weight was similar among groups at weaning, but during adulthood it was lower on HSD and higher on LSD. Food intake, L-thyroxine concentration, uncoupling protein 1 expression and energy expenditure were higher in HSD rats, while non-fasting leptin concentration was lower in these groups compared to NSD and LSD animals. Plasma thyroid-stimulating hormone decreased on both HSD and LSD while plasma glucose and insulin were elevated only on LSD. A decrease in plasma angiotensin II was observed in HSD rats. On LSD, an increase in brown adipose tissue angiotensin II content was associated to decreased uncoupling protein 1 expression and energy expenditure. In this group, a low angiotensin II content in white adipose tissue was also found. Motor activity was not influenced by the dietary salt content. CONCLUSIONS: Chronic alteration in salt intake is associated with changes in body weight, food intake, hormonal profile, and energy expenditure and tissue angiotensin II content.


Subject(s)
Body Weight/drug effects , Diet, Sodium-Restricted , Eating/drug effects , Energy Intake/drug effects , Energy Metabolism/drug effects , Sodium Chloride, Dietary/administration & dosage , Adipose Tissue, Brown/metabolism , Angiotensin II/metabolism , Animals , Body Weight/physiology , Carrier Proteins/metabolism , Dose-Response Relationship, Drug , Eating/physiology , Energy Intake/physiology , Energy Metabolism/physiology , Hypertension/diet therapy , Ion Channels , Male , Membrane Proteins/metabolism , Mitochondrial Proteins , Motor Activity/drug effects , Motor Activity/physiology , Rats , Rats, Wistar , Thyroid Hormones/blood , Time Factors , Uncoupling Protein 1 , Weaning
12.
J Lipid Res ; 44(4): 727-32, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12562870

ABSTRACT

This study aimed at measuring the influence of a low salt diet on the development of experimental atherosclerosis in moderately hyperlipidemic mice. Experiments were carried out on LDL receptor (LDLR) knockout (KO) mice, or apolipoprotein E (apoE) KO mice on a low sodium chloride diet (LSD) as compared with a normal salt diet (NSD). On LSD, the rise of the plasma concentrations of TG and nonesterified fatty acid (NEFA) was, respectively, 19% and 34% in LDLR KO mice, and 21% and 35% in apoE KO mice, and that of plasma cholesterol was limited to the LDLR KO group alone (15%). Probably due to the apoE KO severe hypercholesterolemia, the arterial inner-wall fat storage was not influenced by the diet salt content and was far more abundant in the apoE KO than in the LDLR KO mice. However, in the less severe hypercholesterolemia of the LDLR KO mice, lipid deposits on the LSD were greater than on the NSD. Arterial fat storage correlated with NEFA concentrations in the LDLR KO mice alone (n = 14, P = 0.0065). Thus, dietary sodium chloride restriction enhances aortic wall lipid storage in moderately hyperlipidemic mice.


Subject(s)
Aorta/metabolism , Lipids/blood , Receptors, LDL/deficiency , Sodium Chloride, Dietary/pharmacology , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Arteriosclerosis/etiology , Fatty Acids/blood , Hyperlipidemias/blood , Lipid Metabolism , Mice , Mice, Knockout , Receptors, LDL/genetics , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...