Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Chirality ; 36(3): e23649, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38409881

ABSTRACT

Five diastereomers of ruthenium(II) complexes based on quinolinophaneoxazoline ligands were investigated by vibrational circular dichroism (VCD) in the mid-IR and CH stretching regions. Diastereomers differ in three sources of chirality: the planar chirality of the quinolinophane moiety, the central chirality of an asymmetric carbon atom of the oxazoline ring, and the chirality of the ruthenium atom. VCD, allied to DFT calculations, has been found to be effective in disentangling the various forms of chirality. In particular, a VCD band is identified in the CH stretching region directly connected to the chirality of the metal. The analysis of the calculated VCD spectra is carried out by partitioning the complexes into fragments. The anharmonic analysis is also performed with a recently proposed reduced-dimensionality approach: such treatment is particularly important when examining spectroscopic regions highly perturbed by resonances, like the CH stretching region.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123969, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38330757

ABSTRACT

Vibrational analysis plays a crucial role in the investigation of molecular systems. Though methodologies like second-order vibrational perturbation theory (VPT2) have paved the way to more accurate simulations, the computational cost remains a difficult barrier to overcome when the molecular size increases. Building upon recent advances in the identification of resonances, we propose an approach making anharmonic simulations possible for large-size systems, typically unreachable by standard means. This relies on the fact that, often, only portions of the whole spectra are of actual interest. Therefore, the anharmonic corrections can be included selectively on subsets of normal modes directly related to the regions of interest. Starting from the VPT2 equations, we evaluate rigorously and systematically the impact of the truncated anharmonic treatment onto simulations. The limit and feasibility of the reduced-dimensionality approach are detailed, starting on a smaller model system. The methodology is then challenged on the IR absorption and vibrational circular dichroism spectra of an organometallic complex in three different spectral ranges.

3.
J Pharm Biomed Anal ; 239: 115902, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38101238

ABSTRACT

The key role of chiral small molecules in drug discovery programs has been deeply investigated throughout last decades. In this context, our previous studies highlighted the influence of the absolute configuration of different stereocenters on the pharmacokinetic, pharmacodynamic and functional properties of promising Sigma receptor (SR) modulators. Thus, starting from the racemic SR ligand RC752, we report herein the isolation of the enantiomers via enantioselective separation with both HPLC and SFC. After optimization of the eco-sustainable chiral SFC method, both enantiomers were obtained in sufficient amount (tens of mg) and purity (ee up to 95%) to allow their characterization and initial biological investigation. Both enantiomers a) displayed a high affinity for the S1R subtype (Ki = 15.0 ± 1.7 and 6.0 ± 1.2 nM for the (S)- and (R)-enantiomer, respectively), but only negligible affinity toward the S2R (> 350 nM), and b) were rapidly metabolized when incubated with mouse and human hepatic microsomes. Furthermore, the activity on AQP-mediated water permeability indicated a different functional profile for the enantiomers in terms of modulatory effect on the peroxiporins gating.


Subject(s)
Receptors, sigma , Humans , Mice , Animals , Stereoisomerism , Microsomes, Liver , Protein Binding , Chromatography, High Pressure Liquid/methods
4.
Phys Chem Chem Phys ; 25(34): 22700-22710, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37605892

ABSTRACT

Circularly polarized luminescence (CPL) is increasingly gaining interest not only for its applicative potentialities but also for providing an understanding of the excited state properties of chiral molecules. However, applications of CPL are mainly in the field of materials science: special organic molecules and polymers, metal (lanthanide) complexes, and organic dyes are actively and intensely studied. So far natural compounds have not been investigated much. We fill the gap here by measuring circular dichroism (CD) and CPL of lycorine and narciclasine, the most abundant known alkaloid and isocarbostyril from Amaryllidaceae, which exhibit a large spectrum of biological activities and are promising anticancer compounds. Dual fluorescence detection in narciclasine led us to unveil an occurring excited-state intramolecular proton transfer (ESIPT) process, this mechanism well accounts for the Stokes shift and CPL spectra observed in narciclasine. The same molecule is interesting also as a pH chiroptical switch. Both in absorption and emission, lycorine and narciclasine are also studied computationally via density functional theory (DFT) calculations further shedding light on their properties.

5.
J Phys Chem A ; 127(16): 3648-3657, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37052318

ABSTRACT

A general strategy for the accurate computation of conformational and spectroscopic properties of flexible molecules in the gas phase is applied to two representative proteinogenic amino acids with aromatic side chains, namely, phenylalanine and tyrosine. The main features of all the most stable conformers predicted by this computational strategy closely match those of the species detected in microwave and infrared experiments. Together with their intrinsic interest, the accuracy of the results obtained with reasonable computer times paves the route for accurate investigations of other flexible bricks of life.

6.
Molecules ; 28(6)2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36985535

ABSTRACT

In this work we review research activities on a few of the most relevant structural aspects of bilirubin (BR) and biliverdin (BV). Special attention is paid to the exocyclic C=C bonds being in mostly Z rather than E configurations, and to the overall conformation being essentially different for BR and BV due to the presence or absence of the double C=C bond at C-10. In both cases, racemic mixtures of each compound of either M or P configuration are present in achiral solutions; however, imbalance between the two configurations may be easily achieved. In particular, results based on chiroptical spectroscopies, both electronic and vibrational circular dichroism (ECD and VCD) methods, are presented for chirally derivatized BR and BV molecules. Finally, we review deracemization experiments monitored with ECD data from our lab for BR in the presence of serum albumin and anesthetic compounds.


Subject(s)
Bilirubin , Biliverdine , Biliverdine/chemistry , Circular Dichroism , Molecular Conformation , Vibration , Stereoisomerism
7.
J Chem Theory Comput ; 19(4): 1243-1260, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36731119

ABSTRACT

The accurate characterization of prototypical bricks of life can strongly benefit from the integration of high resolution spectroscopy and quantum mechanical computations. We have selected a number of representative amino acids (glycine, alanine, serine, cysteine, threonine, aspartic acid and asparagine) to validate a new computational setup rooted in quantum-chemical computations of increasing accuracy guided by machine learning tools. Together with low-lying energy minima, the barriers ruling their interconversion are evaluated in order to unravel possible fast relaxation paths. Vibrational and thermal effects are also included in order to estimate relative free energies at the temperature of interest in the experiment. The spectroscopic parameters of all the most stable conformers predicted by this computational strategy, which do not have low-energy relaxation paths available, closely match those of the species detected in microwave experiments. Together with their intrinsic interest, these accurate results represent ideal benchmarks for more approximate methods.

8.
J Phys Chem A ; 126(38): 6719-6733, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36126273

ABSTRACT

Vibrational circular dichroism (VCD) spectra and the corresponding IR spectra of the chiral isomers of methyloxirane and of methylthiirane have been reinvestigated, both experimentally and theoretically, with particular attention to accounting for anharmonic corrections, as calculated by the GVPT2 approach. De novo recorded VCD spectra in the near IR (NIR) range regarding CH-stretching overtone transitions, together with the corresponding NIR absorption spectra, were also considered and accounted for, both with the GVPT2 and with the local mode approaches. Comparison of the two methods has permitted us to better describe the nature of active "anharmonic" modes in the two molecules and the role of mechanical and electrical anharmonicity in determining the intensities of VCD and IR/NIR data. Finally, two nonstandard IR/NIR regions have been investigated: the first one about ≈2000 cm-1, involving mostly two-quanta bending mode transitions, the second one between 7000 and 7500 cm-1 involving three-quanta transitions containing CH-stretching overtones and HCC/HCH bending modes.

9.
J Chem Theory Comput ; 18(10): 6203-6216, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36166322

ABSTRACT

The ongoing integration of quantum chemistry, statistical mechanics, and artificial intelligence is paving the route toward more effective and accurate strategies for the investigation of the spectroscopic properties of medium-to-large size chromophores in condensed phases. In this context we are developing a novel workflow aimed at improving the generality, reliability, and ease of use of the available computational tools. In this paper we report our latest developments with specific reference to unsupervised atomistic simulations employing non periodic boundary conditions (NPBC) followed by clustering of the trajectories employing optimized feature spaces. Next accurate variational computations are performed for a representative point of each cluster, whereas intracluster fluctuations are taken into account by a cheap yet reliable perturbative approach. A number of methodological improvements have been introduced including, e.g., more realistic reaction field effects at the outer boundary of the simulation sphere, automatic definition of the feature space by continuous perception of solute-solvent interactions, full account of polarization and charge transfer in the first solvation shell, and inclusion of vibronic contributions. After its validation, this new approach has been applied to the challenging case of solvatochromic effects on the UV-vis spectra of a prototypical nitroxide radical (TEMPO) in different solvents. The reliability, effectiveness, and robustness of the new platform is demonstrated by the remarkable agreement with experiment of the results obtained through an unsupervised approach characterized by a strongly reduced computational cost as compared to that of conventional quantum mechanics and molecular mechanics models without any accuracy reduction.


Subject(s)
Artificial Intelligence , Quantum Theory , Cyclic N-Oxides , Molecular Dynamics Simulation , Reproducibility of Results , Solvents/chemistry , Spectrum Analysis
10.
J Chem Phys ; 157(7): 074107, 2022 Aug 21.
Article in English | MEDLINE | ID: mdl-35987600

ABSTRACT

An integrated experimental-computational strategy for the accurate characterization of the conformational landscape of flexible biomolecule building blocks is proposed. This is based on the combination of rotational spectroscopy with quantum-chemical computations guided by artificial intelligence tools. The first step of the strategy is the conformer search and relative stability evaluation performed by means of an evolutionary algorithm. In this step, last generation semiempirical methods are exploited together with hybrid and double-hybrid density functionals. Next, the barriers ruling the interconversion between the low-lying conformers are evaluated in order to unravel the possible fast relaxation paths. The relative stabilities and spectroscopic parameters of the "surviving" conformers are then refined using state-of-the-art composite schemes. The reliability of the computational procedure is further improved by the inclusion of vibrational and thermal effects. The final step of the strategy is the comparison between experiment and theory without any ad hoc adjustment, which allows an unbiased assignment of the spectroscopic features in terms of different conformers and their spectroscopic parameters. The proposed approach has been tested and validated for homocysteine, a highly flexible non-proteinogenic α-amino acid. The synergism of the integrated strategy allowed for the characterization of five conformers stabilized by bifurcated N-H2⋯O=C hydrogen bonds, together with an additional conformer involving a more conventional HN⋯H-O hydrogen bond. The stability order estimated from the experimental intensities as well as the number and type of conformers observed in the gas phase are in full agreement with the theoretical predictions. Analogously, a good match has been found for the spectroscopic parameters.


Subject(s)
Artificial Intelligence , Microwaves , Baths , Homocysteine , Reproducibility of Results , Spectrum Analysis
11.
J Chem Theory Comput ; 18(4): 2479-2493, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35257572

ABSTRACT

Multiscale methods combining quantum mechanics and molecular mechanics (QM/MM) have become the most suitable and effective strategies for the investigation of the spectroscopic properties of medium-to-large size chromophores in condensed phases. In this context, we are developing a novel workflow aimed at improving the generality, reliability, and ease of use of the available computational tools. In this paper, we report our latest developments with specific reference to a general protocol based on atomistic simulations, carried out under nonperiodic boundary conditions (NPBC). In particular, we add to our in house MD engine a new efficient treatment of mean field electrostatic contributions to energy and forces, together with the capability of performing the simulations either in the canonical (NVT) or in the isothermal-isobaric (NPT) ensemble. Next, we provide convincing evidence that the NBPC approach enhanced by specific tweaks for rigid body propagation, allows for the simulation of solute-solvent systems with a minimum number of degrees of freedom and large integration time step. After its validation, this new approach is applied to the challenging case of solvatochromic effects on the electron paramagnetic resonance (EPR) spectrum of a prototypical nitroxide radical. To this end, we propose and validate also an automated protocol to extract and weight simulation snapshots, making use of a continuous description of the strength of solute-solvent hydrogen bridges. While further developments are being worked on, the effectiveness of our approach, even in its present form, is demonstrated by the accuracy of the results obtained through an unsupervised approach characterized by a strongly reduced computational cost as compared to that of conventional QM/MM models, without any appreciable deterioration of accuracy.


Subject(s)
Molecular Dynamics Simulation , Quantum Theory , Nitrogen Oxides , Reproducibility of Results , Solvents , Static Electricity
12.
Molecules ; 26(23)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34885980

ABSTRACT

Nitroxide radicals are characterized by a long-lived open-shell electronic ground state and are strongly sensitive to the chemical environment, thus representing ideal spin probes and spin labels for paramagnetic biomolecules and materials. However, the interpretation of spectroscopic parameters in structural and dynamic terms requires the aid of accurate quantum chemical computations. In this paper we validate a computational model rooted into double-hybrid functionals and second order vibrational perturbation theory. Then, we provide reference quantum chemical results for the structures, vibrational frequencies and other spectroscopic features of a large panel of nitroxides of current biological and/or technological interest.

13.
ACS Omega ; 6(20): 13170-13181, 2021 May 25.
Article in English | MEDLINE | ID: mdl-34056467

ABSTRACT

4-Fluoro-threonine, the only fluoro amino acid of natural origin discovered so far, is an interesting target for both synthetic and theoretical investigations. In this work, we lay the foundation for spectroscopic characterization of 4-fluoro-threonine. First, we report a diastereoselective synthetic route, which is suitable to produce synthetic material for experimental characterization. The addition of the commercially available ethyl isocyanoacetate to benzyloxyacetaldehyde led to the corresponding benzyloxy-oxazoline, which was hydrolyzed and transformed into ethyl (4S*,5S*)-5-hydroxymethyl-2-oxo-4-oxazolidinecarboxylate in a few steps. Fluorination with diethylamino sulfur trifluoride (DAST) afforded ethyl (4S*,5S*)-5-fluoromethyl-2-oxo-4-oxazolidinecarboxylate, which was deprotected to give the desired diastereomerically pure 4-fluoro-threonine, in 8-10% overall yield. With the synthetic material in our hands, acid-base titrations have been carried out to determine acid dissociation constants and the isoelectric point, which is the testing ground for the theoretical analysis. We have used machine learning coupled with quantum chemistry at the state-of-the-art to analyze the conformational space of 4-fluoro-threonine, with the aim of gaining insights from the comparison of computational and experimental results. Indeed, we have demonstrated that our approach, which couples a last-generation double-hybrid density functional including empirical dispersion contributions with a model combining explicit first-shell molecules and a polarizable continuum for describing solvent effects, provides results and trends in remarkable agreement with experiments. Finally, the conformational analysis applied to fluoro amino acids represents an interesting study for the effect of fluorine on the stability and population of conformers.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 254: 119631, 2021 Jun 05.
Article in English | MEDLINE | ID: mdl-33761386

ABSTRACT

Chiroptical spectra are among the most suitable techniques for investigating the ground and excited electronic states of chiral systems, but their interpretation is not straightforward and strongly benefits from quantum chemical simulations, provided that the employed computational model is sufficiently accurate and deals properly with stereo-electronic, vibrational averaging and environmental effects. Since the synergy among all these effects is only rarely accounted for, especially for large and flexible organometallic systems, the main aim of this contribution is to illustrate the latest developments of computational approaches rooted into the density functional theory for describing stereo-electronic effects and complemented by effective techniques to deal with vibrational modulation effects and solvatochromic shifts. In this connection, chiral iridium complexes offer an especially suitable case study in view of their bright phosphorescence, which is particularly significant for building effective light emitting diodes (OLEDs) and biomarkers and can be finely tuned by the nature of the metal ligands. For instance, a recently synthesized family of cycloiridiated complexes, KC and KD, bearing a pentahelicenic N-heterocyclic carbene (KB), has shown an enhanced long-lasting, bright phosphorescence. Deeper insights into the still unclear nature and origin of the enhancement could be gained by the interpretation of the chiroptical spectra, which is quite challenging in view of the presence of two sources of chirality, the chiral center on Ir and the chiral axis related to the helicene ligand, in addition to the relativistic effects related to the presence of the Ir center. At the same time, the large dimensions of KC and KD hamper the use of the most sophisticated (but prohibitively expensive) computational models, so that more approximate approaches must be validated on a suitable model compound. To this end, after optimizing the computational scheme on a model system devoid of the helicene moiety (KA), we have performed a comprehensive investigation of the KC and KD spectra, whose interpretation is further aided by novel graphical tools. The discussion and analysis of the results will not be focused on the theoretical background, but, rather, on practical details (specific functional, basis set, vibronic model, solvent regime) with the aim of providing general guidelines for the use of last-generation computational spectroscopy tools also by non-specialists.

15.
J Phys Chem A ; 125(10): 2121-2129, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33661002

ABSTRACT

Cycloserine has in common with isoxazolidines the saturated five-membered ring, which is an important scaffold for drug design, exhibiting diverse biological activities. The most remarkable feature of these compounds is the presence of the N-O bond framed in a cyclic moiety. The lack of an accurate characterization of this structural feature in an isolated system calls for a state-of-the-art theoretical-experimental study. A quantum-chemical investigation of cycloserine unveiled the presence of 11 local energy minima, with only two of them being separated by significant barriers. This picture has been experimentally confirmed: two species have been unequivocally detected in the gas phase by means of laser ablation microwave spectroscopy, also disentangling the complicated hyperfine structure originating from the presence of two nitrogen atoms. A thorough characterization of cycloserine and isoxazolidine, benchmarked by the semiexperimental investigation of hydroxylamine, provided the first accurate determination of their structures and pointed out that the rev-DSD-PBEP86 functional is competitive with respect to explicitly correlated coupled-cluster computations. This outcome paves the way toward accurate studies of large flexible molecules.

16.
Inorg Chem ; 60(5): 2976-2982, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33550804

ABSTRACT

Based on the supramolecular interaction between vancomycin (Van), an antibiotic glycopeptide, and D-Ala-D-Ala (DADA) dipeptides, a novel class of artificial metalloenzymes was synthesized and characterized. The presence of an iridium(III) ligand at the N-terminus of DADA allowed the use of the metalloenzyme as a catalyst in the asymmetric transfer hydrogenation of cyclic imines. In particular, the type of link between DADA and the metal-chelating moiety was found to be fundamental for inducing asymmetry in the reaction outcome, as highlighted by both computational studies and catalytic results. Using the [IrCp*(m-I)Cl]Cl ⊂ Van complex in 0.1 M CH3COONa buffer at pH 5, a significant 70% (S) e.e. was obtained in the reduction of quinaldine B.


Subject(s)
Coordination Complexes/chemistry , Dipeptides/chemistry , Imines/chemistry , Vancomycin/chemistry , Catalysis , Coordination Complexes/chemical synthesis , Dipeptides/chemical synthesis , Hydrogenation , Iridium/chemistry , Oxidation-Reduction , Vancomycin/chemical synthesis
17.
Front Chem ; 8: 584203, 2020.
Article in English | MEDLINE | ID: mdl-33195078

ABSTRACT

Accuracy and interpretability are often seen as the devil and holy grail in computational spectroscopy and their reconciliation remains a primary research goal. In the last few decades, density functional theory has revolutionized the situation, paving the way to reliable yet effective models for medium size molecules, which could also be profitably used by non-specialists. In this contribution we will compare the results of some widely used hybrid and double hybrid functionals with the aim of defining the most suitable recipe for all the spectroscopic parameters of interest in rotational and vibrational spectroscopy, going beyond the rigid rotor/harmonic oscillator model. We will show that last-generation hybrid and double hybrid functionals in conjunction with partially augmented double- and triple-zeta basis sets can offer, in the framework of second order vibrational perturbation theory, a general, robust, and user-friendly tool with unprecedented accuracy for medium-size semi-rigid molecules.

18.
J Chem Phys ; 153(12): 124110, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-33003701

ABSTRACT

The fruitful interplay of high-resolution spectroscopy and quantum chemistry has a long history, especially in the field of small, semi-rigid molecules. However, in recent years, the targets of spectroscopic studies are shifting toward flexible molecules, characterized by a large number of closely spaced energy minima, all contributing to the overall spectrum. Here, artificial intelligence comes into play since it is at the basis of powerful unsupervised techniques for the exploration of soft degrees of freedom. Integration of such algorithms with a two-stage QM/QM' (Quantum Mechanical) exploration/refinement strategy driven by a user-friendly graphical interface is the topic of the present paper. We will address in particular: (i) the performances of different semi-empirical methods for the exploration step and (ii) the comparison between stochastic and meta-heuristic algorithms in achieving a cheap yet complete exploration of the conformational space for medium sized chromophores. As test cases, we choose three amino acids of increasing complexity, whose full conformer enumeration has been reached only very recently. Next, we show that systems in condensed phases can be treated at the same level and with the same efficiency when employing a polarizable continuum description of the solvent. Finally, the challenging issue represented by the vibrational circular dichroism spectra of some rhodium complexes with flexible ligands has been addressed, showing that our fully unsupervised approach leads to remarkable agreement with the experiment.

19.
Front Chem ; 8: 801, 2020.
Article in English | MEDLINE | ID: mdl-33102435

ABSTRACT

Over the last decade, molecules capable of emitting circularly polarized light have attracted growing attention for potential technological and biological applications. The efficiency of such devices depend on multiple parameters, in particular the magnitude and wavelength of the peak of emitted light, and also on the dissymmetry factor for chiral applications. In light of these considerations, molecular systems with tunable optical properties, preferably in the visible spectral region, are particularly appealing. This is the case of boron dipyrromethene (BODIPY) dyes, which exhibit large molecular absorption coefficients, have high fluorescence yields, are very stable, both thermally and photochemically, and can be easily functionalized. The latter property has been extensively exploited in the literature to produce chromophores with a wide range of optical properties. Nevertheless, only a few chiral BODIPYs have been synthetized and investigated so far. Using a recently reported axially chiral BODIPY derivative where an axially chiral BINOL unit has been attached to the chromophore unit, we present a comprehensive computational protocol to predict and interpret the one-photon absorption and emission spectra, together with their chiroptical counterparts. From the physico-chemical properties of this molecule, it will be possible to understand the origin of the circularly polarized luminescence better, thus helping to fine-tune the properties of interest. The sensitivity of such processes require accurate results, which can be achieved through a proper account of the vibrational structure in optical spectra. Methodologies to compute vibrationally-resolved electronic spectra can now be applied on relatively large chromophores, such as BODIPYs, but require more extensive computational protocols. For this reason, particular attention is paid in the description of the different steps of the protocol, and the potential pitfalls. Finally, we show how, by means of appropriate tools and approaches, data from intermediate steps of the simulation of the final spectra can be used to obtain further insights into the properties of the molecular system under investigation and the origin of the visible bands.

20.
Angew Chem Int Ed Engl ; 59(50): 22427-22430, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-32896062

ABSTRACT

The chirality controlled conformational landscape of the trimer of propylene oxide (PO), a prototypical chiral molecule, was investigated using rotational spectroscopy and a range of theoretical tools for conformational searches and for evaluating vibrational contributions to effective structures. Two sets of homochiral (PO)3 rotational transitions were assigned and the associated conformers identified with theoretical support. One set of heterochiral (PO)3 transitions was assigned, but no structures generated by one of the latest, advanced conformational search codes could account for them. With the aid of a Python program, the carbon atom backbone and then the heterochiral (PO)3 structure were generated using 13 C isotopic data. Excellent agreement between theoretical and experimental rotational constants and relative dipole moment components of all three conformers was achieved, especially after applying vibrational corrections to the rotational constants.

SELECTION OF CITATIONS
SEARCH DETAIL
...