Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Adv Healthc Mater ; 13(18): e2400388, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38465502

ABSTRACT

Hydrogel-based 3D cell cultures can recapitulate (patho)physiological phenomena ex vivo. However, due to their complex multifactorial regulation, adapting these tissue and disease models for high-throughput screening workflows remains challenging. In this study, a new precision culture scaling (PCS-X) methodology combines statistical techniques (design of experiment and multiple linear regression) with automated, parallelized experiments and analyses to customize hydrogel-based vasculogenesis cultures using human umbilical vein endothelial cells and retinal microvascular endothelial cells. Variations of cell density, growth factor supplementation, and media composition are systematically explored to induce vasculogenesis in endothelial mono- and cocultures with mesenchymal stromal cells or retinal microvascular pericytes in 384-well plate formats. The developed cultures are shown to respond to vasculogenesis inhibitors in a compound- and dose-dependent manner, demonstrating the scope and power of PCS-X in creating parallelized tissue and disease models for drug discovery and individualized therapies.


Subject(s)
Human Umbilical Vein Endothelial Cells , Neovascularization, Physiologic , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Neovascularization, Physiologic/drug effects , Hydrogels/chemistry , Coculture Techniques/methods , High-Throughput Screening Assays/methods , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Pericytes/cytology , Pericytes/metabolism , Pericytes/drug effects , Cell Culture Techniques/methods , Cell Culture Techniques/instrumentation , Endothelial Cells/cytology , Endothelial Cells/metabolism
2.
Cancer Immunol Immunother ; 73(1): 8, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231344

ABSTRACT

Bone marrow mesenchymal stromal cells (MSCs) have been described as potent regulators of T-cell function, though whether they could impede the effectiveness of immunotherapy against acute myeloid leukemia (AML) is still under investigation. We examine whether they could interfere with the activity of leukemia-specific clonal cytotoxic T-lymphocytes (CTLs) and chimeric antigen receptor (CAR) T cells, as well as whether the immunomodulatory properties of MSCs could be associated with the induction of T-cell senescence. Co-cultures of leukemia-associated Wilm's tumor protein 1 (WT1) and tyrosine-protein kinase transmembrane receptor 1 (ROR1)-reactive CTLs and of CD123-redirected switchable CAR T cells were prepared in the presence of MSCs and assessed for cytotoxic potential, cytokine secretion, and expansion. T-cell senescence within functional memory sub-compartments was investigated for the senescence-associated phenotype CD28-CD57+ using unmodified peripheral blood mononuclear cells. We describe inhibition of expansion of AML-redirected switchable CAR T cells by MSCs via indoleamine 2,3-dioxygenase 1 (IDO-1) activity, as well as reduction of interferon gamma (IFNγ) and interleukin-2 (IL-2) release. In addition, MSCs interfered with the secretory potential of leukemia-associated WT1- and ROR1-targeting CTL clones, inhibiting the release of IFNγ, tumor necrosis factor alpha, and IL-2. Abrogated T cells were shown to retain their cytolytic activity. Moreover, we demonstrate induction of a CD28loCD27loCD57+KLRG1+ senescent T-cell phenotype by MSCs. In summary, we show that MSCs are potent modulators of anti-leukemic T cells, and targeting their modes of action would likely be beneficial in a combinatorial approach with AML-directed immunotherapy.


Subject(s)
Leukemia, Myeloid, Acute , Mesenchymal Stem Cells , Humans , Bone Marrow , Interleukin-2 , CD28 Antigens , Leukocytes, Mononuclear , Leukemia, Myeloid, Acute/therapy , T-Lymphocytes, Cytotoxic , Clone Cells
3.
Adv Healthc Mater ; 12(14): e2201907, 2023 06.
Article in English | MEDLINE | ID: mdl-36417691

ABSTRACT

Pancreatic cancer is a devastating malignancy with minimal treatment options. Standard-of-care therapy, including surgery and chemotherapy, is unsatisfactory, and therapies harnessing the immune system have been unsuccessful in clinical trials. Resistance to therapy and disease progression are mediated by the tumor microenvironment, which contains excessive amounts of extracellular matrix and stromal cells, acting as a barrier to drug delivery. There is a lack of preclinical pancreatic cancer models that reconstruct the extracellular, cellular, and biomechanical elements of tumor tissues to assess responses toward immunotherapy. To address this limitation and explore the effects of immunotherapy in combination with chemotherapy, a multicellular 3D cancer model using a star-shaped poly(ethylene glycol)-heparin hydrogel matrix is developed. Human pancreatic cancer cells, cancer-associated fibroblasts, and myeloid cells are grown encapsulated in hydrogels to mimic key components of tumor tissues, and cell responses toward treatment are assessed. Combining the CD11b agonist ADH-503 with anti-PD-1 immunotherapy and chemotherapy leads to a significant reduction in tumor cell viability, proliferation, metabolic activity, immunomodulation, and secretion of immunosuppressive and tumor growth-promoting cytokines.


Subject(s)
Pancreatic Neoplasms , Tumor Microenvironment , Humans , Immunotherapy , Pancreatic Neoplasms/drug therapy , Immunomodulation , Pancreatic Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL