Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ind Eng Chem Res ; 63(11): 4756-4770, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38525291

ABSTRACT

Temporal analysis of products (TAP) reactors enable experiments that probe numerous kinetic processes within a single set of experimental data through variations in pulse intensity, delay, or temperature. Selecting additional TAP experiments often involves an arbitrary selection of reaction conditions or the use of chemical intuition. To make experiment selection in TAP more robust, we explore the efficacy of model-based design of experiments (MBDoE) for precision in TAP reactor kinetic modeling. We successfully applied this approach to a case study of synthetic oxidative propane dehydrogenation (OPDH) that involves pulses of propane and oxygen. We found that experiments identified as optimal through the MBDoE for precision generally reduce parameter uncertainties to a higher degree than alternative experiments. The performance of MBDoE for model divergence was also explored for OPDH, with the relevant active sites (catalyst structure) being unknown. An experiment that maximized the divergence between the three proposed mechanisms was identified and provided evidence that improved the mechanism discrimination. However, reoptimization of kinetic parameters eliminated the ability to discriminate between models. The findings yield insight into the prospects and limitations of MBDoE for TAP and transient kinetic experiments.

2.
Angew Chem Int Ed Engl ; 60(39): 21502-21511, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34339591

ABSTRACT

The complex structure of the catalytic active phase, and surface-gas reaction networks have hindered understanding of the oxidative coupling of methane (OCM) reaction mechanism by supported Na2 WO4 /SiO2 catalysts. The present study demonstrates, with the aid of in situ Raman spectroscopy and chemical probe (H2 -TPR, TAP and steady-state kinetics) experiments, that the long speculated crystalline Na2 WO4 active phase is unstable and melts under OCM reaction conditions, partially transforming to thermally stable surface Na-WOx sites. Kinetic analysis via temporal analysis of products (TAP) and steady-state OCM reaction studies demonstrate that (i) surface Na-WOx sites are responsible for selectively activating CH4 to C2 Hx and over-oxidizing CHy to CO and (ii) molten Na2 WO4 phase is mainly responsible for over-oxidation of CH4 to CO2 and also assists in oxidative dehydrogenation of C2 H6 to C2 H4 . These new insights reveal the nature of catalytic active sites and resolve the OCM reaction mechanism over supported Na2 WO4 /SiO2 catalysts.

3.
J Am Chem Soc ; 143(29): 10998-11006, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34279927

ABSTRACT

We report a combined experimental/theoretical approach to studying heterogeneous gas/solid catalytic processes using low-pressure pulse response experiments achieving a controlled approach to equilibrium that combined with quantum mechanics (QM)-based computational analysis provides information needed to reconstruct the role of the different surface reaction steps. We demonstrate this approach using model catalysts for ammonia synthesis/decomposition. Polycrystalline iron and cobalt are studied via low-pressure TAP (temporal analysis of products) pulse response, with the results interpreted through reaction free energies calculated using QM on Fe-BCC(110), Fe-BCC(111), and Co-FCC(111) facets. In TAP experiments, simultaneous pulsing of ammonia and deuterium creates a condition where the participation of reactants and products can be distinguished in both forward and reverse reaction steps. This establishes a balance between competitive reactions for D* surface species that is used to observe the influence of steps leading to nitrogen formation as the nitrogen product remains far from equilibrium. The approach to equilibrium is further controlled by introducing delay timing between NH3 and D2 which allows time for surface reactions to evolve before being driven in the reverse direction from the gas phase. The resulting isotopic product distributions for NH2D, NHD2, and HD at different temperatures and delay times and NH3/D2 pulsing order reveal the role of the N2 formation barrier in controlling the surface concentration of NHx* species, as well as providing information on the surface lifetimes of key reaction intermediates. Conclusions derived for monometallic materials are used to interpret experimental results on a more complex and active CoFe bimetallic catalyst.

4.
J Am Chem Soc ; 143(27): 10261-10274, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34213895

ABSTRACT

Surface impurities involving parasitic reactions and gas evolution contribute to the degradation of high Ni content LiNixMnyCozO2 (NMC) cathode materials. The transient kinetic technique of temporal analysis of products (TAP), density functional theory, and infrared spectroscopy have been used to study the formation of surface impurities on varying nickel content NMC materials (NMC811, NMC622, NMC532, NMC433, NMC111) in the presence of CO2 and H2O. CO2 reactivity on a clean surface as characterized by CO2 conversion rate in the TAP reactor follows the order: NMC811 > NMC622 > NMC532 > NMC433 > NMC111. The capacity of CO2 uptake follows a different order: NMC532 > NMC433 > NMC622 > NMC811 > NMC111. Moisture pretreatment slows down the direct CO2 adsorption process and creates additional active sites for CO2 adsorption. Electronic structure calculations predict that the (012) surface is more reactive than the (1014) surface for CO2 and H2O adsorption. CO2 adsorption leading to carbonate formation is exothermic with formation of ion pairs. The average CO2 binding energies on the different materials follow the CO2 reactivity order. Water hydroxylates the (012) surface and surface OH groups favor bicarbonate formation. Water creates more active sites for CO2 adsorption on the (1014) surface due to hydrogen bonding. The composition of surface impurities formed in ambient air exposure is dependent on water concentration and the percentage of different crystal planes. Different surface reactivities suggest that battery performance degradation due to surface impurities can be mitigated by precise control of the dominant surfaces in NMC materials.

5.
J Phys Chem A ; 123(40): 8717-8725, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31525972

ABSTRACT

Transient pulse response experiments are used to construct rate/concentration kinetic dependencies, RC Petals and provide a new method to distinguish the timing and interplay of adsorption, surface reaction, and product formation on complex (industrial) materials. A petal shape arises as the dynamic "reaction-diffusion" experiment forces the concentration and reaction rate to return to zero. In contrast to the typical steady-state "Langmuir-type" RC dependence, RC petals have two branches, which arise as a result of decoupled gas and surface concentrations in the non-steady-state regime. To demonstrate this approach, the characteristics of petal shapes using ammonia decomposition as a probe reaction are presented. Ammonia, hydrogen, and nitrogen transformation rates are compared on three simple materials: iron, cobalt, and a bimetallic CoFe preparation when ammonia is pulsed at 550 °C in a low-pressure diffusion reactor. All materials demonstrate a two-branch kinetic RC dependence for ammonia adsorption, and rate constants are quantified in the low-coverage regime. We found that H2 and N2 product formation was dependent on the concentration of surface intermediates for all materials with one exception: for cobalt, an additional fast hydrogen generation process was observed; the rate of which coincided with ammonia adsorption. Nitrogen generation was only significant for CoFe and cobalt and on the CoFe catalyst, a self-inhibition property was observed. A method for estimating the number of active sites based on the RC petals is presented and was applied to the iron and CoFe samples. The surface coverage and rate of formation/conversion of surface intermediates are interpreted from the examination of shape characteristics of the RC petals for each material.

6.
ACS Appl Mater Interfaces ; 9(11): 9815-9822, 2017 Mar 22.
Article in English | MEDLINE | ID: mdl-28262012

ABSTRACT

We recently showed that phase-pure molybdenum carbide nanotubes can be durable supports for platinum (Pt) nanoparticles in hydrogen evolution reaction (HER). In this paper we further characterize surface properties of the same Pt/ß-Mo2C catalyst platform using carbon monoxide (CO)-Pt and CO-Mo2C bond strength of different Pt particle sizes in the <3 nm range. Results from diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temporal analysis of products (TAP) revealed the existence of different active sites as Pt particle size increases. Correlation between the resultant catalyst activity and deposited Pt particle size was further investigated using water-gas-shift (WGS) as a probe reaction, suggesting that precise control of particle diameter and thickness is needed for optimized catalytic activity.

7.
Faraday Discuss ; 188: 57-67, 2016 07 04.
Article in English | MEDLINE | ID: mdl-27376884

ABSTRACT

The activation of molecular O2 as well as the reactivity of adsorbed oxygen species is of central importance in aerobic selective oxidation chemistry on Au-based catalysts. Herein, we address the issue of O2 activation on unsupported nanoporous gold (npAu) catalysts by applying a transient pressure technique, a temporal analysis of products (TAP) reactor, to measure the saturation coverage of atomic oxygen, its collisional dissociation probability, the activation barrier for O2 dissociation, and the facility with which adsorbed O species activate methanol, the initial step in the catalytic cycle of esterification. The results from these experiments indicate that molecular O2 dissociation is associated with surface silver, that the density of reactive sites is quite low, that adsorbed oxygen atoms do not spill over from the sites of activation onto the surrounding surface, and that methanol reacts quite facilely with the adsorbed oxygen atoms. In addition, the O species from O2 dissociation exhibits reactivity for the selective oxidation of methanol but not for CO. The TAP experiments also revealed that the surface of the npAu catalyst is saturated with adsorbed O under steady state reaction conditions, at least for the pulse reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...