Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
eNeuro ; 9(6)2022.
Article in English | MEDLINE | ID: mdl-36265903

ABSTRACT

Circadian rhythms are biological processes that cycle across 24 h and regulate many facets of neurophysiology, including learning and memory. Circadian variation in spatial memory task performance is well documented; however, the effect of sex across circadian time (CT) remains unclear. Additionally, little is known regarding the impact of time-of-day on hippocampal neuronal physiology. Here, we investigated the influence of both sex and time-of-day on hippocampal neurophysiology and memory in mice. Performance on the object location memory (OLM) task depended on both circadian time and sex, with memory enhanced at night in males but during the day in females. Long-term synaptic potentiation (LTP) magnitude at CA3-CA1 synapses was greater at night compared with day in both sexes. Next, we measured spontaneous synaptic excitation and inhibition onto CA1 pyramidal neurons. Frequency and amplitude of inhibition was greater during the day compared with night, regardless of sex. Frequency and amplitude of excitation was larger in females, compared with males, independent of time-of-day, although both time-of-day and sex influenced presynaptic release probability. At night, CA1 pyramidal neurons showed enhanced excitability (action potential firing and/or baseline potential) that was dependent on synaptic excitation and inhibition, regardless of sex. This study emphasizes the importance of sex and time-of-day in hippocampal physiology, especially given that many neurologic disorders impacting the hippocampus are linked to circadian disruption and present differently in men and women. Knowledge about how sex and circadian rhythms affect hippocampal physiology can improve the translational relevancy of therapeutics and inform the appropriate timing of existing treatments.


Subject(s)
Sex Characteristics , Spatial Memory , Female , Mice , Animals , Male , Circadian Rhythm , Neuronal Plasticity/physiology , Neurophysiology , Hippocampus/physiology , Long-Term Potentiation/physiology , CA1 Region, Hippocampal/physiology
2.
Neurobiol Dis ; 158: 105454, 2021 10.
Article in English | MEDLINE | ID: mdl-34333153

ABSTRACT

Patients with Alzheimer's disease (AD) often have fragmentation of sleep/wake cycles and disrupted 24-h (circadian) activity. Despite this, little work has investigated the potential underlying day/night disruptions in cognition and neuronal physiology in the hippocampus. The molecular clock, an intrinsic transcription-translation feedback loop that regulates circadian behavior, may also regulate hippocampal neurophysiological activity. We hypothesized that disrupted diurnal variation in clock gene expression in the hippocampus corresponds with loss of normal day/night differences in membrane excitability, synaptic physiology, and cognition. We previously reported disrupted circadian locomotor rhythms and neurophysiological output of the suprachiasmatic nucleus (the primary circadian clock) in Tg-SwDI mice with human amyloid-beta precursor protein mutations. Here, we report that Tg-SwDI mice failed to show day/night differences in a spatial working memory task, unlike wild-type controls that exhibited enhanced spatial working memory at night. Moreover, Tg-SwDI mice had lower levels of Per2, one of the core components of the molecular clock, at both mRNA and protein levels when compared to age-matched controls. Interestingly, we discovered neurophysiological impairments in area CA1 of the Tg-SwDI hippocampus. In controls, spontaneous inhibitory post-synaptic currents (sIPSCs) in pyramidal cells showed greater amplitude and lower inter-event interval during the day than the night. However, the normal day/night differences in sIPSCs were absent (amplitude) or reversed (inter-event interval) in pyramidal cells from Tg-SwDI mice. In control mice, current injection into CA1 pyramidal cells produced more firing during the night than during the day, but no day/night difference in excitability was observed in Tg-SwDI mice. The normal day/night difference in excitability in controls was blocked by GABA receptor inhibition. Together, these results demonstrate that the normal diurnal regulation of inhibitory transmission in the hippocampus is diminished in a mouse model of AD, leading to decreased daytime inhibition onto hippocampal CA1 pyramidal cells. Uncovering disrupted day/night differences in circadian gene regulation, hippocampal physiology, and memory in AD mouse models may provide insight into possible chronotherapeutic strategies to ameliorate Alzheimer's disease symptoms or delay pathological onset.


Subject(s)
Amyloid beta-Protein Precursor/genetics , Circadian Rhythm Signaling Peptides and Proteins/genetics , Circadian Rhythm/genetics , Gene Expression Regulation/genetics , Hippocampus/metabolism , Hippocampus/physiopathology , Spatial Memory , Synaptic Transmission , Animals , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/physiopathology , Excitatory Postsynaptic Potentials/genetics , Female , GABA Antagonists/pharmacology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pyramidal Cells , Receptor, PAR-2/biosynthesis , Receptor, PAR-2/genetics
3.
Elife ; 92020 06 30.
Article in English | MEDLINE | ID: mdl-32602839

ABSTRACT

Parvalbumin-expressing interneurons (PVs) in the dentate gyrus provide activity-dependent regulation of adult neurogenesis as well as maintain inhibitory control of mature neurons. In mature neurons, PVs evoke GABAA postsynaptic currents (GPSCs) with fast rise and decay phases that allow precise control of spike timing, yet synaptic currents with fast kinetics do not appear in adult-born neurons until several weeks after cell birth. Here we used mouse hippocampal slices to address how PVs signal to newborn neurons prior to the appearance of fast GPSCs. Whereas PV-evoked currents in mature neurons exhibit hallmark fast rise and decay phases, newborn neurons display slow GPSCs with characteristics of spillover signaling. We also unmasked slow spillover currents in mature neurons in the absence of fast GPSCs. Our results suggest that PVs mediate slow spillover signaling in addition to conventional fast synaptic signaling, and that spillover transmission mediates activity-dependent regulation of early events in adult neurogenesis.


Subject(s)
Dentate Gyrus/physiology , Interneurons/metabolism , Neural Inhibition/physiology , Parvalbumins/metabolism , Animals , Dentate Gyrus/growth & development , Mice , Mice, Transgenic , Neurogenesis , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...