Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biomedicines ; 11(3)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36979714

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive molecular subtype of breast cancer, and current treatments are only partially effective in disease control. More effective combination approaches are needed to improve the survival of TNBC patients. Eribulin mesylate, a non-taxane microtubule dynamics inhibitor, is approved by the U.S. Food and Drug Administration to treat metastatic breast cancer after at least two previous chemotherapeutic regimens. However, eribulin as a single agent has limited therapeutic efficacy against TNBC. METHODS: High-throughput kinome library RNAi screening, Ingenuity Pathway Analysis, and STRING analysis were performed to identify target kinases for combination with eribulin. The identified combinations were validated using in vivo and ex vivo proliferation assays. RESULTS: We identified 135 potential kinase targets whose inhibition enhanced the antiproliferation effect of eribulin in TNBC cells, with the PI3K/Akt/mTOR and the MAPK/JNK pathways emerging as the top candidates. Indeed, copanlisib (pan-class I PI3K inhibitor), everolimus (mTOR inhibitor), trametinib (MEK inhibitor), and JNK-IN-8 (pan-JNK inhibitor) produced strong synergistic antiproliferative effects when combined with eribulin, and the PI3K and mTOR inhibitors had the most potent effects in vitro. CONCLUSIONS: Our data suggest a new strategy of combining eribulin with PI3K or mTOR inhibitors to treat TNBC.

2.
Breast Cancer Res Treat ; 176(1): 251, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30982934

ABSTRACT

Unfortunately in the original publication of the article, the author's funding support has been mentioned incorrectly. The correct funding statement should read as "This work was supported by the Morgan Welch Inflammatory Breast Cancer Research Program, the State of Texas Rare and Aggressive Breast Cancer Research Program, MD Anderson's Cancer Center Support Grant (P30CA016672, used the Characterized Cell Line Core Facility and Flow Cytometry and Cellular Imaging Facility), and Spirita Oncology, LLC."The first affiliations was incorrect in the original article. The correct information is given below.

3.
Breast Cancer Res Treat ; 175(2): 339-351, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30826934

ABSTRACT

PURPOSE: Triple-negative breast cancer (TNBC) lacks the receptor targets estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2, and thus, it does not respond to receptor-targeted treatments. TNBC has higher recurrence, metastasis, and mortality rates than other subtypes of breast cancer. Mounting data suggest that the MAPK (also known as RAS-RAF-MEK-ERK) pathway is an important therapeutic target in TNBC. METHODS: To evaluate anti-tumor and anti-metastasis efficacy of E6201, we used cell proliferation assay, soft agar assay, cell cycle assay, Annexin V staining assay, immunoblotting analysis, immunohistochemistry, migration assay, invasion assay, mammary fat pad xenograft, and experimental and spontaneous metastasis xenograft models. We also evaluated the anti-tumor efficacy of E6201 plus CDK4/6 inhibitor, mTOR inhibitor, or ATR inhibitor. RESULTS: E6201 inhibited TNBC cell colony formation, migration, and invasion in a dose-dependent manner. E6201 induced G1 cell cycle arrest and apoptosis. E6201 inhibited TNBC xenograft growth and inhibited TNBC lung metastasis and improved mouse survival in experimental metastasis and spontaneous metastasis assays. Immunohistochemical staining demonstrated that E6201 decreased the metastatic burden in the lung and decreased phosphorylated ERK expression in a dose-dependent manner. Combination of E6201 with CDK4/6 inhibitor or mTOR inhibitor enhanced E6201's in vitro anti-tumor efficacy. CONCLUSION: These results indicate that E6201 exhibits anti-tumor efficacy against TNBC in vitro and anti-metastasis efficacy against TNBC in vivo. These results provide a rationale for further clinical development of E6201 as a MAPK-pathway-targeted therapy for TNBC.


Subject(s)
Cell Proliferation/drug effects , Lactones/pharmacology , MAP Kinase Kinase 1/genetics , Triple Negative Breast Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/genetics , Female , Heterografts , Humans , MAP Kinase Kinase 1/antagonists & inhibitors , Mice , Neoplasm Metastasis , Protein Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL