Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38676260

ABSTRACT

The study presents a promising approach to enzymatic kinetics using Electrochemical Impedance Spectroscopy (EIS) to assess fundamental parameters of modified enteropeptidases. Traditional methods for determining these parameters, while effective, often lack versatility and convenience, especially under varying environmental conditions. The use of EIS provides a novel approach that overcomes these limitations. The enteropeptidase underwent genetic modification through the introduction of single amino acid modifications to assess their effect on enzyme kinetics. However, according to the one-sample t-test results, the difference between the engineered enzymes and hEKL was not statistically significant by conventional criteria. The kinetic parameters were analyzed using fluorescence spectroscopy and EIS, which was found to be an effective tool for the real-time measurement of enzyme kinetics. The results obtained through EIS were not significantly different from those obtained through traditional fluorescence spectroscopy methods (p value >> 0.05). The study validates the use of EIS for measuring enzyme kinetics and provides insight into the effects of specific amino acid changes on enteropeptidase function. These findings have potential applications in biotechnology and biochemical research, suggesting a new method for rapidly assessing enzymatic activity.


Subject(s)
Dielectric Spectroscopy , Kinetics , Dielectric Spectroscopy/methods , Spectrometry, Fluorescence/methods , Biosensing Techniques/methods , Protein Engineering/methods
2.
Toxics ; 11(7)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37505525

ABSTRACT

Chemical warfare agents (CWAs) are one of the most toxic compounds. Degradation of CWAs using decontamination agents is one of the few ways to protect human health against the harmful effects of CWAs. A ferrate (VI)-based potential chemical warfare agent decontaminant was studied for the degradation of persistent nitrogen mustard (tris(2-chloroethyl)amine, HN3). By optimizing the reaction conditions, the complete degradation of HN3 was achieved in 4 min. The degradation products contained mostly reduced Fe species, which confirmed the environmental friendliness of the proposed decontamination solution.

3.
Chemosphere ; 313: 137517, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36495982

ABSTRACT

Rising amounts of antibiotic residues in wastewater cause serious problems including increased bacterial resistance. Wastewater treatment plants (WWTPs) do not, in the case of new, modern pharmaceuticals, ensure their complete removal. Ciprofloxacin (CIP) is one of many micropollutants that partially pass through WWTPs, implying that its monitoring is essential for the assessment of the water quality. In real sewage systems, the determination of CIP needs to be performed under flowing conditions, which calls for the deployment of inexpensive, robust, and easily integrable approaches such as electrochemical techniques. However, to the best of our knowledge, there is no report on the electrochemical determination of CIP in a flowing matrix. To bridge this gap, we perform here cyclic and square-wave voltammetric sensing study of CIP employing boron-doped diamond screen printed electrodes in a custom-made 3D printed flow-through cell to mimic conditions in real sewage systems. An irreversible two-step oxidation of CIP is demonstrated, with the first step providing clear Faradaic response as analytically relevant signal. This response was found to scale with the sample flow rate according to the prediction given by Levich equation. Our work provides an in-depth inspection of the electrochemical response of CIP under controlled-convection conditions, which is an essential prerequisite for monitoring this antibiotic in real flowing sewage systems.


Subject(s)
Ciprofloxacin , Sewage , Anti-Bacterial Agents , Ciprofloxacin/adverse effects , Ciprofloxacin/chemistry , Diamond/chemistry , Electrochemical Techniques , Electrodes , Pharmaceutical Preparations/chemistry , Printing, Three-Dimensional , Sewage/chemistry
4.
Pathogens ; 11(4)2022 Apr 09.
Article in English | MEDLINE | ID: mdl-35456125

ABSTRACT

The outbreak of the coronavirus disease 2019 (COVID-19) raises questions about the effective inactivation of its causative agent, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in medical wastewater by disinfectants. For this reason, our study of wastewater from a selected hospital evaluated several different advanced oxidation methods (Fenton reaction and Fenton-like reaction and ferrate (VI)) capable of effectively removing SARS-CoV-2 RNA. The obtained results of all investigated oxidation processes, such as ferrates, Fenton reaction and its modifications achieved above 90% efficiency in degradation of SARS-CoV-2 RNA in model water. The efficiency of degradation of real SARS-CoV-2 from hospital wastewater declines in following order ferrate (VI) > Fenton reaction > Fenton-like reaction. Similarly, the decrease of chemical oxygen demand compared to effluent was observed. Therefore, all of these methods can be used as a replacement of chlorination at the wastewater effluent, which appeared to be insufficient in SARS-CoV-2 removal (60%), whereas using of ferrates showed efficiency of up to 99%.

5.
Sci Rep ; 12(1): 3692, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35256690

ABSTRACT

Caffeic acid (CA) is a phenolic compound synthesized by all plant species. It constitutes the main hydroxycinnamic acid found in human diet and presents a variety of beneficial effects including anticancer activity. Current data suggests essential role of the interplay between anticancer drugs and the cell membrane. Given this, biophysical interactions between CA and cancer cells or biomimetic membranes were investigated. Glioblastoma cell line U118MG and colorectal adenocarcinoma cell line DLD-1, as well as lipid bilayers and liposomes, were used as in vitro models. Electrophoretic light scattering was used to assess the effect of CA on the surface charge of cancer cells and liposomal membranes. Electrochemical impedance spectroscopy was chosen to evaluate CA-dependent modulatory effect on the electrical capacitance and electrical resistance of the bilayers. Our results suggest that CA fulfills physicochemical criteria determining drug-like properties of chemical compounds, and may serve as a potential cytostatic agent in cancer treatment.


Subject(s)
Biomimetics , Neoplasms , Caffeic Acids/pharmacology , Humans , Hydrogen-Ion Concentration , Lipid Bilayers/chemistry , Liposomes
6.
Sci Rep ; 11(1): 19456, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34593871

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerges to scientific research and monitoring of wastewaters to predict the spread of the virus in the community. Our study investigated the COVID-19 disease in Bratislava, based on wastewater monitoring from September 2020 until March 2021. Samples were analyzed from two wastewater treatment plants of the city with reaching 0.6 million monitored inhabitants. Obtained results from the wastewater analysis suggest significant statistical dependence. High correlations between the number of viral particles in wastewater and the number of reported positive nasopharyngeal RT-qPCR tests of infected individuals with a time lag of 2 weeks/12 days (R2 = 83.78%/R2 = 52.65%) as well as with a reported number of death cases with a time lag of 4 weeks/27 days (R2 = 83.21%/R2 = 61.89%) was observed. The obtained results and subsequent mathematical modeling will serve in the future as an early warning system for the occurrence of a local site of infection and, at the same time, predict the load on the health system up to two weeks in advance.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/genetics , Wastewater/analysis , Wastewater/virology , COVID-19/mortality , Disease Outbreaks/prevention & control , Humans , Models, Theoretical , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction , Slovakia/epidemiology , Wastewater/chemistry , Wastewater-Based Epidemiological Monitoring , Water Purification
7.
Antibiotics (Basel) ; 10(9)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34572652

ABSTRACT

Municipal wastewaters can generally provide real-time information on drug consumption, the incidence of specific diseases, or establish exposure to certain agents and determine some lifestyle consequences. From this point of view, wastewater-based epidemiology represents a modern diagnostic tool for describing the health status of a certain part of the population in a specific region. Hospital wastewater is a complex mixture of pharmaceuticals, illegal drugs, and their metabolites as well as different susceptible and antibiotic-resistant microorganisms, including viruses. Many studies pointed out that wastewater from healthcare facilities (including hospital wastewater), significantly contributes to higher loads of micropollutants, including bacteria and viruses, in municipal wastewater. In addition, such a mixture can increase the selective pressure on bacteria, thus contributing to the development and dissemination of antimicrobial resistance. Because many pharmaceuticals, drugs, and microorganisms can pass through wastewater treatment plants without any significant change in their structure and toxicity and enter surface waters, treatment technologies need to be improved. This short review summarizes the recent knowledge from studies on micropollutants, pathogens, antibiotic-resistant bacteria, and viruses (including SARS-CoV-2) in wastewater from healthcare facilities. It also proposes several possibilities for improving the wastewater treatment process in terms of efficiency as well as economy.

8.
Article in English | MEDLINE | ID: mdl-34070320

ABSTRACT

New methodologies based on the principle of "sewage epidemiology" have been successfully applied before in the detection of illegal drugs. The study describes the idea of early detection of a virus, e.g., SARS-CoV-2, in wastewater in order to focus on the area of virus occurrence and supplement the results obtained from clinical examination. By monitoring temporal variation in viral loads in wastewater in combination with other analysis, a virus outbreak can be detected and its spread can be suppressed early. The use of biosensors for virus detection also seems to be an interesting application. Biosensors are highly sensitive, selective, and portable and offer a way for fast analysis. This manuscript provides an overview of the current situation in the area of wastewater analysis, including genetic sequencing regarding viral detection and the technological solution of an early warning system for wastewater monitoring based on biosensors.


Subject(s)
COVID-19 , Wastewater-Based Epidemiological Monitoring , Humans , Mutation , SARS-CoV-2 , Sewage , Wastewater
9.
J Water Process Eng ; 43: 102223, 2021 Oct.
Article in English | MEDLINE | ID: mdl-35592837

ABSTRACT

Waterborne pathogens including viruses, bacteria and micropollutants secreted from population can spread through the sewerage system. In this study, the efficiency of unique effervescent ferrate-based tablets was evaluated for total RNA and DNA removal, disinfection and degradation of micropollutants in hospital wastewater. For the purpose of testing, proposed tablets (based on citric acid or sodium dihydrogen phosphate) were used for various types of hospital wastewater with specific biological and chemical contamination. Total RNA destruction efficiency using tablets was 70-100% depending on the type of acidic component. DNA destruction efficiency was lower on the level 51-94% depending on the type of acidic component. In addition, our study confirms that effervescent ferrate-based tablets are able to efficiently remove of SARS-CoV-2 RNA from wastewater. Degradation of often detected micropollutants (antiepileptic, antidepressant, antihistamine, hypertensive and their metabolites) was dependent on the type of detected pharmaceuticals and on the acidic component used. Sodium dihydrogen phosphate based tablet appeared to be more effective than citric acid based tablet and removed some pharmaceuticals with efficiency higher than 97%. Last but not least, the disinfection ability was also verified. Tableted ferrates were confirmed to be an effective disinfectant and no resistant microorganisms were observed after treatment. Total and antibiotic resistant bacteria (coliforms and enterococci) were determined by cultivation on diagnostic selective agar growth media.

10.
Dalton Trans ; 49(48): 17786-17795, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33283829

ABSTRACT

Two tridentate ligands (L1 = 2,6-bis(1-(3,5-di-tert-butylbenzyl)-1H-benzimidazol-2-yl)pyridine and L2 = 2,6-bis(1-(4-tert-butylbenzyl)-1H-benzimidazol-2-yl)pyridine) and one didentate ligand (L3 = 1-(4-tert-butylbenzyl)-2-pyridine-2-yl-1H-benzimidazol) were used for the synthesis of eight mononuclear Fe(ii) compounds 1-8 containing miscellaneous counterions. Single-crystal X-ray diffraction analysis confirmed the expected molecular structures of all the reported coordination compounds and revealed the octahedral geometry of metal centres in the complex dications of 1-8. Compounds 1-6 prepared from tridentate ligands were low-spin and, therefore, diamagnetic up to 400 K. On the other hand, compounds 7 and 8, in which the Fe(ii) centre was coordinated with didentate ligand L3, exhibited temperature and light triggered spin-crossover behaviour. The theoretical calculations supported the experimental magnetic investigation and helped to explain the electronic structures of the reported complexes with respect to the occurrence of thermal and light induced spin state switching. In addition, the solution redox properties of compounds 1-8 were investigated by cyclic voltammetry.

11.
Membranes (Basel) ; 10(11)2020 Nov 15.
Article in English | MEDLINE | ID: mdl-33203075

ABSTRACT

Pharmacological efficiency of active compounds is largely determined by their membrane permeability. Thus, identification of drug-membrane interactions seems to be a crucial element determining drug-like properties of chemical agents. Yet, knowledge of this issue is still lacking. Since chemoprevention based on natural compounds such as cinnamic acid (CinA), p-coumaric acid (p-CoA) and ferulic (FA) is becoming a strong trend in modern oncopharmacology, determination of physicochemical properties of these anticancer compounds is highly important. Here, electrophoretic light scattering and impedance spectroscopy were applied to study the effects of these phenolic acids on electrical properties of bilayers formed from 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-diacyl-sn-glycero-3-phospho-l-serine (PS) or DOPC-PS mixture. After phenolic acid treatment, the negative charge of membranes increased in alkaline pH solutions, but not in acidic ones. The impedance data showed elevated values of both the electrical capacitance and the electrical resistance. We concluded that at acidic pH all tested compounds were able to solubilize into the membrane and permeate it. At neutral and alkaline pH, the CinA could be partially inserted into the bilayers, whereas p-CoA and FA could be anchored at the bilayer surface. Our results indicate that the electrochemical methods might be crucial for predicting pharmacological activity and bioavailability of phenolic acids.

12.
Int J Mol Sci ; 21(18)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971943

ABSTRACT

Cinnamic acid (CA) and ferulic acid (FA) are naturally occurring phenolic acids claimed to exert beneficial effects against disorders related to oxidative stress, including cancer. One such malignancy that still remains a therapeutic challenge mainly due to its heterogeneity and inaccessibility to therapeutic agents is Glioblastoma multiforme (GBM). Here, the influence of CA and FA on the surface charge density of human GBM cell line LN-229 was studied using the electrophoretic light scattering technique. Also, the cytotoxicity of both phenolic acids was determined by metabolic activity-assessing tetrazolium test (MTT) analysis after exposure to CA and FA for 24 h and 48 h. Results showed that both compounds reduced cell viability of LN-229 cells, with more pronounced effect evoked by CA as reflected in IC50 values. Further analyses demonstrated that, after treatment with both phenolic acids, the negative charge of membranes decreased at high pH values and the positive charge of the membranes increased at low pH values compared to the data obtained for untreated cells. Afterward, a four-equilibrium model was applied to estimate the total surface concentrations of both acidic and basic functional groups and their association constants with solution ions in order to calculate theoretical values of membrane surface charge densities. Then, the theoretical data were compared to the experimental data in order to verify the mathematical model. As such, our results indicate that application of electrochemical methods to determine specific drug-membrane interactions might be crucial for predicting their pharmacological activity and bioavailability.


Subject(s)
Cell Membrane/metabolism , Cinnamates/pharmacology , Coumaric Acids/pharmacology , Glioblastoma/metabolism , Membrane Potentials/drug effects , Cell Line, Tumor , Cell Membrane/pathology , Cell Survival/drug effects , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans
14.
Int J Mol Sci ; 20(21)2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31653017

ABSTRACT

p-Coumaric acid (p-CoA), a phenolic acid belonging to the hydroxycinnamic acids family, is a compound with tentative anticancer potential. Microelectrophoretic mobility measurements conducted at various pH values of electrolyte solution were applied to study p-CoA effects on electrical properties of human glioblastoma cell membranes. The obtained results demonstrated that after the p-CoA treatment, the surface charge density of cancer cells changed in alkaline pH solutions, while no noticeable changes were observed in cell membranes incubated with p-CoA compared to control at acidic pH solutions. A four-equilibrium model was used to describe the phenomena occurring on the cell membrane surface. The total surface concentrations of both acidic and basic functional groups and their association constants with solution ions were calculated and used to define theoretical curves of membrane surface charge density versus pH. The resulting theoretical curves and the experimental data were compared to verify the reliability and validity of the adopted model. The deviation of both kinds of data obtained at a higher pH may be caused by disregarding interactions between the functional groups of cancer cells. Processes occurring in the cell membranes after their incubation with p-CoA can lead to disorders of existing equilibria, which result in changes in values of the parameters describing these equilibria.


Subject(s)
Cell Membrane/drug effects , Propionates/pharmacology , Cell Line, Tumor , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Survival/drug effects , Coumaric Acids , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Hydrogen-Ion Concentration , Surface Properties
15.
Environ Sci Pollut Res Int ; 26(31): 31812-31821, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31487008

ABSTRACT

Various types of micropollutants, e.g., pharmaceuticals and their metabolites and resistant strains of pathogenic microorganisms, are usually found in hospital wastewaters. The aim of this paper was to study the presence of 74 frequently used pharmaceuticals, legal and illegal drugs, and antibiotic-resistant bacteria in 5 hospital wastewaters in Slovakia and Czechia and to compare the efficiency of several advanced oxidations processes (AOPs) for sanitation and treatment of such highly polluted wastewaters. The occurrence of micropollutants and antibiotic-resistant bacteria was investigated by in-line SPE-LC-MS/MS technique and cultivation on antibiotic and antibiotic-free selective diagnostic media, respectively. The highest maximum concentrations were found for cotinine (6700 ng/L), bisoprolol (5200 ng/L), metoprolol (2600 ng/L), tramadol (2400 ng/L), sulfamethoxazole (1500 ng/L), and ranitidine (1400 ng/L). In the second part of the study, different advanced oxidation processes, modified Fenton reaction, ferrate(VI), and oxidation by boron-doped diamond electrode were tested in order to eliminate the abovementioned pollutants. Obtained results indicate that the modified Fenton reaction and application of boron-doped diamond electrode were able to eliminate almost the whole spectrum of selected micropollutants with efficiency higher than 90%. All studied methods achieved complete removal of the antibiotic-resistant bacteria present in hospital wastewaters.


Subject(s)
Iron/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Wastewater/microbiology , Boron , Chromatography, Liquid , Czech Republic , Diamond , Drug Resistance, Bacterial , Electrodes , Hospitals , Hydrogen Peroxide/chemistry , Illicit Drugs/analysis , Medical Waste , Oxidation-Reduction , Pharmaceutical Preparations/analysis , Slovakia , Tandem Mass Spectrometry , Waste Disposal, Fluid/instrumentation , Wastewater/analysis , Water Pollutants, Chemical/analysis
16.
Bioorg Chem ; 92: 103242, 2019 11.
Article in English | MEDLINE | ID: mdl-31494330

ABSTRACT

Biological membranes are one of the most important elements of living cells determining their permeability to the active compounds. Still, little is known about the drug-membrane interactions in terms of pharmacological properties of potential drugs. Chemoprevention based on natural compounds is becoming a strong trend in modern oncopharmacology, and p-coumaric acid (p-CoA) is one such compound with tentative anticancer activity. The microelectrophoretic mobility measurements and electrochemical impedance spectroscopy were applied to study the effects of p-CoA on electrical properties of liposomes, spherical bilayers, and human glioblastoma cell membranes. Our results demonstrated that after treatment with p-CoA, the surface charge of LBC3, LN-229 and LN-18 cell lines was significantly changed in alkaline pH solutions, but not in acidic pH solutions. In contrast, no changes in surface charge density values were registered for phosphatidylethanolamine liposomal membranes and A172 cell membranes after p-CoA treatment. The impedance data showed an increase in values of both the electrical capacitance and the electrical resistance, indicating that p-CoA can be partially inserted into the phosphatidylcholine bilayers. The MTT assay showed cell line-dependent cytotoxic effect of p-CoA. Further molecular analyses revealed the ATP depletion and gene transcription modulation, which might indicate organelle membrane-crossing potential of p-CoA. These results suggest, that changes in surface charge of membranes of living cells not only might be potential predictor of membrane permeability, but also indicate differential composition of cell membranes in various cell lines. Thus further multidirectional analyses are required to implement electrochemical methods as standard testing procedures during drug development process.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Lipid Bilayers/chemistry , Membranes, Artificial , Models, Biological , Propionates/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Membrane Permeability/drug effects , Cell Survival/drug effects , Coumaric Acids , Dielectric Spectroscopy , Dose-Response Relationship, Drug , Electric Impedance , Electrophoresis , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Lipid Bilayers/metabolism , Liposomes , Permeability , Phospholipids/chemistry , Propionates/administration & dosage , Propionates/pharmacokinetics , Surface Properties
17.
Sci Total Environ ; 659: 326-334, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30599351

ABSTRACT

Drug consumption in individual cities, regions, and at various music events and festivals across the EU has generally been monitored via questionnaires, patients' medical data, and police reports. However, an overview of drug consumption obtained from these methods can be negatively affected by various subjective factors. We aimed to investigate an association between levels of target drugs in wastewater, music genres, and festival courses. The occurrence of illicit drugs, their metabolites, and psychoactive compounds was investigated in the influent of six wastewater treatment plants in the Czech and Slovak Republic during seven large-scale music festivals from different music genres: metal, rock, pop, country and folk, ethnic, multi-genre, dance, and trance. The total number of participants included >130,000 active festival attendees. The association between music genre and illicit drug and/or psychoactive pharmaceutical consumptions is discussed on the basis of the results obtained through wastewater analyses. The observed trend was similar to worldwide published data with a specific local phenomenon of methamphetamine prevalence that did not significantly change between music events. Increased specific loads of cocaine (measured as its metabolite benzoylecgonine) and Ecstasy, along with some cannabis, were mainly observed during pop/rock and dance music festivals. However, there was no significant increase observed in the specific loads of all monitored psychoactive pharmaceuticals. This study demonstrates that the abuse of some illicit drugs is closely associated with specific music preferences.


Subject(s)
Environmental Monitoring , Holidays , Illicit Drugs/analysis , Music , Wastewater/analysis , Water Pollutants, Chemical/analysis , Czech Republic , Humans , Slovakia
18.
Bioelectrochemistry ; 124: 133-141, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30029034

ABSTRACT

Quercetin is a naturally-occurring flavonoid claimed to exert many beneficial health effects. In this report, the influence of quercetin on the surface charge of phosphatidylcholine liposomes and human glioblastoma LN-229 and LN-18 cells was studied using microelectrophoretic mobility measurements. The effect of quercetin on the electrical resistance and capacitance of bilayer lipid membranes was analyzed via electrochemical impedance spectroscopy. The results showed that after flavonoid treatment, the cell lines demonstrated changes in surface charge only in alkaline pH solutions, whereas there were no significant alterations in quercetin-treated vs. control cells in acidic pH solutions. The same tendency was found for liposomal membranes proving that quercetin insertion into membranes is strongly pH-dependent. Capacitance and resistance measurements conducted in acidic electrolyte solutions demonstrated an increase in both electrical parameters, indicating an increased amount of quercetin inserted into the bilayers. Moreover, the cytotoxic effect of quercetin confirms that the flavonoid enters the cells and perturbs the proliferation of LN-229 and LN-18 glioblastoma cell lines. As such, our results indicate that the specific localization of quercetin, membrane-bound or cell-entering, might be crucial for its pharmacological activity. However, further studies are necessary prior to applying these physicochemical measurements as standard methods of evaluating drug activity.


Subject(s)
Brain Neoplasms/pathology , Electricity , Glioblastoma/pathology , Liposomes , Phosphatidylcholines/chemistry , Quercetin/pharmacology , Cell Line, Tumor , Cell Membrane/metabolism , Cytoplasm/metabolism , Dielectric Spectroscopy , Dose-Response Relationship, Drug , Electrophoresis/methods , Humans , Hydrogen-Ion Concentration , Lipid Bilayers , Quercetin/pharmacokinetics , Surface Properties , Time Factors
19.
Environ Sci Pollut Res Int ; 24(27): 21894-21901, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28779343

ABSTRACT

Green algae Cladophora aegagropila, present in cooling water of thermal power plants, causes many problems and complications, especially during summer. However, algae and its metabolites are rarely eliminated by common removal methods. In this work, the elimination efficiency of electrochemically prepared potassium ferrate(VI) on algae from cooling water was investigated. The influence of experimental parameters, such as Fe(VI) dosage, application time, pH of the system, temperature and hydrodynamics of the solution on removal efficiency, was optimized. This study demonstrates that algae C. aegagropila can be effectively removed from cooling water by ferrate. Application of ferrate(VI) at the optimized dosage and under the suitable conditions (temperature, pH) leads to 100% removal of green algae Cladophora from the system. Environmentally friendly reduction products (Fe(III)) and coagulation properties favour the application of ferrate for the treatment of water contaminated with studied microorganisms compared to other methods such as chlorination and use of permanganate, where harmful products are produced.


Subject(s)
Chlorophyta/drug effects , Iron Compounds/chemistry , Oxidants/chemistry , Potassium Compounds/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Chlorophyta/growth & development , Dose-Response Relationship, Drug , Hydrogen-Ion Concentration , Iron Compounds/administration & dosage , Oxidants/administration & dosage , Oxidation-Reduction , Potassium Compounds/administration & dosage , Time Factors
20.
Chemistry ; 23(42): 10100-10109, 2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28488743

ABSTRACT

A novel molecular design is described where two peripheral moieties made of 2,6-bis(1H-pyrazol-1-yl)pyridine are linked through multi-1,8-diethynylanthracene moieties. The optimized synthesis of the three isostructural analogues 1 a, 1 b, and 1 c, containing the anthraquinone, anthracene, and 10-methoxyanthracene units, respectively, is reported. The resulting spatial face-to-face arrangement of the peripheral anthracene rings enables to trigger the intramolecular [4+4] photocycloaddition affording the isomers P1 b and P1 c, which can be thermally cleaved back to the original anthracene derivatives 1 b and 1 c, respectively. Single-crystal X-ray diffraction studies confirm the expected molecular structures of compounds 1 a-1 c as well as of their corresponding isomers P1 b and P1 c. The spectral, optical, and electrochemical properties of all synthesized compounds are investigated and discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...