Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 182: 89-94, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-25842313

ABSTRACT

Literature mentions propyl gallate (PG) as a non-toxic synthetic antioxidant that can be used as a food additive due to its high tolerance to heat. It is important to understand the thermal properties and to identify the decomposition products of this substance, since it has been reported to be thermally stable at temperatures as high as 300 °C. Simultaneous thermogravimetry-differential thermal analysis (TG-DTA), differential scanning calorimetry-photovisual (DSC-photovisual), coupled thermogravimetry-infrared spectroscopy (TG-FTIR) analyses and spectroscopic techniques were used to study the food additive PG. The TG-DTA curves, which were performed with the aid of DSC-photovisual, provided information concerning the thermal stability and decomposition profiles of the compound. From the TG-FTIR coupled techniques, it was possible to identify n-propanol as a possible volatile compound released during the thermal decomposition of the antioxidant. A complete spectroscopic characterization in the ultraviolet, visible, near and middle infrared regions was performed in order to understand the spectroscopic properties of PG.


Subject(s)
Food Additives/analysis , Propyl Gallate/analysis , Spectrum Analysis/methods , Antioxidants , Calorimetry, Differential Scanning
2.
J Inorg Biochem ; 140: 160-6, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25108188

ABSTRACT

Solid-state compounds of the general formulae [ML3] (M=Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y; L=ketoprofen) were synthesized and characterized using infrared, diffuse reflectance and luminescence spectroscopies. IR data suggested that the carboxylate group in ketoprofen is coordinated to the metals as a bidentate ligand. The triplet state energy level was determined using the Gd(3+) complex, which exhibited a ketoprofen blue luminescence when excited in the UV region. The compound containing Tb(3+) ion was sensitized by the ligand and emitted in the green region of the visible spectrum. On the other hand, for the analogous species containing the dysprosium ion, a competition for luminescence between the Dy(3+) and the ligand levels was observed. Finally, Tm(3+) complex exhibits only ligand luminescence. These optical behaviors are discussed based on rare earth energy diagrams. In addition, the compounds were evaluated for their anti-inflammatory activities. All the compounds showed a higher production of H2O2 and IL-10 than the ketoprofen, suggesting that the compounds exhibited an immunomodulatory effect and this opens up new perspectives for immunotherapeutic approaches.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Ketoprofen/pharmacology , Lanthanoid Series Elements/chemistry , Yttrium/chemistry , Cells, Cultured , Humans , In Vitro Techniques , Luminescence , Spectrophotometry, Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...