Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 180
Filter
1.
Arq Bras Cardiol ; 121(4): e20230578, 2024.
Article in Portuguese, English | MEDLINE | ID: mdl-38695473

ABSTRACT

BACKGROUND: Currently, excess ventilation has been grounded under the relationship between minute-ventilation/carbon dioxide output ( V ˙ E - V ˙ CO 2 ). Alternatively, a new approach for ventilatory efficiency ( η E V ˙ ) has been published. OBJECTIVE: Our main hypothesis is that comparatively low levels of η E V ˙ between chronic heart failure (CHF) and chronic obstructive pulmonary disease (COPD) are attainable for a similar level of maximum and submaximal aerobic performance, conversely to long-established methods ( V ˙ E - V ˙ CO 2 slope and intercept). METHODS: Both groups performed lung function tests, echocardiography, and cardiopulmonary exercise testing. The significance level adopted in the statistical analysis was 5%. Thus, nineteen COPD and nineteen CHF-eligible subjects completed the study. With the aim of contrasting full values of V ˙ E - V ˙ CO 2 and η V ˙ E for the exercise period (100%), correlations were made with smaller fractions, such as 90% and 75% of the maximum values. RESULTS: The two groups attained matched characteristics for age (62±6 vs. 59±9 yrs, p>.05), sex (10/9 vs. 14/5, p>0.05), BMI (26±4 vs. 27±3 Kg m2, p>0.05), and peak V ˙ O 2 (72±19 vs. 74±20 %pred, p>0.05), respectively. The V ˙ E - V ˙ CO 2 slope and intercept were significantly different for COPD and CHF (27.2±1.4 vs. 33.1±5.7 and 5.3±1.9 vs. 1.7±3.6, p<0.05 for both), but η V ˙ E average values were similar between-groups (10.2±3.4 vs. 10.9±2.3%, p=0.462). The correlations between 100% of the exercise period with 90% and 75% of it were stronger for η V ˙ E (r>0.850 for both). CONCLUSION: The η V ˙ E is a valuable method for comparison between cardiopulmonary diseases, with so far distinct physiopathological mechanisms, including ventilatory constraints in COPD.


FUNDAMENTO: Atualmente, o excesso de ventilação tem sido fundamentado na relação entre ventilação-minuto/produção de dióxido de carbono ( V ˙ E − V ˙ CO 2 ). Alternativamente, uma nova abordagem para eficiência ventilatória ( η E V ˙ ) tem sido publicada. OBJETIVO: Nossa hipótese principal é que níveis comparativamente baixos de η E V ˙ entre insuficiência cardíaca crônica (ICC) e doença pulmonar obstrutiva crônica (DPOC) são atingíveis para um nível semelhante de desempenho aeróbico máximo e submáximo, inversamente aos métodos estabelecidos há muito tempo (inclinação V ˙ E − V ˙ CO 2 e intercepto). MÉTODOS: Ambos os grupos realizaram testes de função pulmonar, ecocardiografia e teste de exercício cardiopulmonar. O nível de significância adotada na análise estatística foi 5%. Assim, dezenove indivíduos elegíveis para DPOC e dezenove indivíduos elegíveis para ICC completaram o estudo. Com o objetivo de contrastar valores completos de V ˙ E − V ˙ CO 2 e η E V ˙ para o período de exercício (100%), correlações foram feitas com frações menores, como 90% e 75% dos valores máximos. RESULTADOS: Os dois grupos tiveram características correspondentes para a idade (62±6 vs 59±9 anos, p>.05), sexo (10/9 vs 14/5, p>0,05), IMC (26±4 vs 27±3 Kg m2, p>0,05), e pico V ˙ O 2 (72±19 vs 74±20 % pred, p>0,05), respectivamente. A inclinação V ˙ E − V ˙ CO 2 e intercepto foram significativamente diferentes para DPOC e ICC (207,2±1,4 vs 33,1±5,7 e 5,3±1,9 vs 1,7±3,6, p<0,05 para ambas), mas os valores médios da η E V ˙ foram semelhantes entre os grupos (10,2±3,4 vs 10,9±2,3%, p=0,462). As correlações entre 100% do período do exercício com 90% e 75% dele foram mais fortes para η E V ˙ (r>0,850 para ambos). CONCLUSÃO: A η E V ˙ é um método valioso para comparação entre doenças cardiopulmonares, com mecanismos fisiopatológicos até agora distintos, incluindo restrições ventilatórias na DPOC.


Subject(s)
Exercise Test , Heart Failure , Oxygen Consumption , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/physiopathology , Male , Middle Aged , Female , Heart Failure/physiopathology , Exercise Test/methods , Aged , Oxygen Consumption/physiology , Respiratory Function Tests , Exercise Tolerance/physiology , Pulmonary Ventilation/physiology , Reference Values , Echocardiography , Chronic Disease , Carbon Dioxide
2.
Crit Care Res Pract ; 2023: 9335379, 2023.
Article in English | MEDLINE | ID: mdl-37547450

ABSTRACT

Objective: To investigate the effects of an early neuromuscular electrical stimulation (NMES) protocol on muscle quality and size as well as signaling mediators of muscle growth and systemic inflammation in patients with traumatic brain injury (TBI). Design: Two-arm, single-blinded, parallel-group, randomized, controlled trial with a blinded assessment. Setting. Trauma intensive care unit at a university hospital. Participants. Forty consecutive patients on mechanical ventilation (MV) secondary to TBI were prospectively recruited within the first 24 hours following admission. Interventions. The intervention group (NMES; n = 20) received a daily session of NMES on the rectus femoris muscle for five consecutive days (55 min/each session). The control group (n = 20) received usual care. Main Outcome Measures. Muscle echogenicity and thickness were evaluated by ultrasonography. A daily blood sample was collected to assess circulating levels of insulin-like growth factor I (IGF-I), inflammatory cytokines, and matrix metalloproteinases (MMP). Results: Both groups were similar at baseline. A smaller change in muscle echogenicity and thickness (difference between Day 1 and Day 7) was found in the control group compared to the NMES group (29.9 ± 2.1 vs. 3.0 ± 1.2, p < 0.001; -0.79 ± 0.12 vs. -0.01 ± 0.06, p < 0.001, respectively). Circulating levels of IGF-I, pro-inflammatory cytokines (IFN-y), and MMP were similar between groups. Conclusion: An early NMES protocol can preserve muscle size and quality and maintain systemic levels of signaling mediators of muscle growth and inflammation in patients with TBI. This trial is registered with https://www.ensaiosclinicos.gov.br under number RBR-2db.

3.
Spinal Cord ; 61(7): 359-367, 2023 07.
Article in English | MEDLINE | ID: mdl-37393409

ABSTRACT

STUDY DESIGN: Systematic review and meta-analysis. OBJECTIVES: The objective was to summarize the effectiveness of Inspiratory Muscle Training (IMT) on the quality of life in individuals with Spinal Cord Injury (SCI). METHODS: An online systematic literature search was conducted in the following databases: PubMed/MEDLINE, PubMed CENTRAL, EMBASE, ISI Web of Science, SciELO, CINAHL/SPORTDiscus, and PsycINFO. Randomized and non-randomized clinical studies investigating the effectiveness of IMT in quality of life were included in the present study. The results used the mean difference and 95% confidence interval for maximal inspiratory pressure (MIP), forced expiratory volume in 1 s (FEV1), maximal expiratory pressure (MEP), and the standardized mean differences for the quality of life and maximum ventilation volume. RESULTS: The search found 232 papers, and after the screening, four studies met the inclusion criteria and were included in the meta-analytical procedures (n = 150 participants). No changes were demonstrated in the quality of life domains (general health, physical function, mental health, vitality, social function, emotional problem, and pain) after IMT. The IMT provided a considerable effect over the MIP but not on FEV1 and MEP. Conversely, it was not able to provide changes in any of the quality of life domains. None of the included studies evaluated the IMT effects on the expiratory muscle maximal expiratory pressure. CONCLUSION: Evidence from studies shows that inspiratory muscle training improves the MIP; however, this effect does not seem to translate to any change in the quality of life or respiratory function outcomes in individuals with SCI.


Subject(s)
Breathing Exercises , Spinal Cord Injuries , Humans , Breathing Exercises/methods , Muscle Strength/physiology , Quality of Life , Respiratory Muscles , Respiratory Therapy , Spinal Cord Injuries/therapy , Clinical Trials as Topic
4.
J Endocrinol Invest ; 46(4): 815-827, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36318449

ABSTRACT

PURPOSE: Aging is associated with changes in glucose homeostasis related to both decreased insulin secretion and/or impaired insulin action, contributing to the high prevalence of type 2 diabetes (T2D) in the elderly population. Additionally, studies are showing that chronically high levels of circulating insulin can also lead to insulin resistance. In contrast, physical exercise has been a strategy used to improve insulin sensitivity and metabolic health. However, the molecular alterations resulting from the effects of physical exercise in the liver on age-related hyperinsulinemia conditions are not yet fully established. This study aimed to investigate the effects of 7 days of aerobic exercise on hepatic metabolism in aged hyperinsulinemic rats (i.e., Wistar and F344) and in Slc2a4+/- mice (hyperglycemic and hyperinsulinemic mice). RESULTS: Both aged models showed alterations in insulin and glucose tolerance, which were associated with essential changes in hepatic fat metabolism (lipogenesis, gluconeogenesis, and inflammation). In contrast, 7 days of physical exercise was efficient in improving whole-body glucose and insulin sensitivity, and hepatic metabolism. The Slc2a4+/- mice presented significant metabolic impairments (insulin resistance and hepatic fat accumulation) that were improved by short-term exercise training. In this scenario, high circulating insulin may be an important contributor to age-related insulin resistance and hepatic disarrangements in some specific conditions. CONCLUSION: In conclusion, our data demonstrated that short-term aerobic exercise was able to control mechanisms related to hepatic fat accumulation and insulin sensitivity in aged rodents. These effects could contribute to late-life metabolic health and prevent the development/progression of age-related T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Aged , Animals , Humans , Mice , Rats , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Insulin/metabolism , Liver/metabolism , Rats, Inbred F344 , Rats, Wistar , Rodentia/metabolism , Physical Conditioning, Animal
6.
Clin Physiol Funct Imaging ; 42(6): 396-412, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35808940

ABSTRACT

OBJECTIVE: To summarize the existing evidence on the acute response of low-load (LL) resistance exercise (RE) with blood flow restriction (BFR) on hemodynamic parameters. DATA SOURCES: MEDLINE (via PubMed), EMBASE (via Scopus), SPORTDiscus, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, Web of Science and MedRxiv databases were searched from inception to February 2022. REVIEW METHODS: Cross-over trials investigating the acute effect of LLRE + BFR versus passive (no exercise) and active control methods (LLRE or HLRE) on heart rate (HR), systolic (SBP), diastolic (DBP) and mean (MBP) blood pressure responses. RESULTS: The quality of the studies was assessed using the PEDro scale, risk of bias using the RoB 2.0 tool for cross-over trials and certainty of the evidence using the GRADE method. A total of 15 randomized cross-over studies with 466 participants were eligible for analyses. Our data showed that LLRE + BFR increases all hemodynamic parameters compared to passive control, but not compared to conventional resistance exercise. Subgroup analysis did not demonstrate any differences between LLRE + BFR and low- (LL) or high-load (HL) resistance exercise protocols. Studies including younger volunteers presented higher chronotropic responses (HR) than those with older volunteers. CONCLUSIONS: Despite causing notable hemodynamic responses compared to no exercise, the short-term LL resistance exercise with BFR modulates all hemodynamic parameters HR, SBP, DBP and MBP, similarly to a conventional resistance exercise protocol, whether at low or high-intensity. The chronotropic response is slightly higher in younger healthy individuals despite the similarity regarding pressure parameters.


Subject(s)
Resistance Training , Cross-Over Studies , Hemodynamics , Humans , Muscle, Skeletal/blood supply , Randomized Controlled Trials as Topic , Regional Blood Flow/physiology , Resistance Training/methods
8.
Acta Gastroenterol Belg ; 85(1): 97-101, 2022.
Article in English | MEDLINE | ID: mdl-35305000

ABSTRACT

Acute esophageal necrosis is a rare syndrome classically characterized by black distal esophagus with a complex pathophysiology that usually involves a combination of esophageal ischemia, gastroesophageal reflux and impaired mucosal reparative mechanisms. We retrospectively analyzed the main risk factors, clinical characteristics and outcome in all patients diagnosed with acute esophageal necrosis between January 2015 and December 2020 at our center. Ten patients were identified in a total of 26854 upper digestive endoscopies (0.04%). Most patients were male (8/10) and the mean age of presentation was 71.1 years. The most common presenting symptoms were melena and hematemesis and half the patients required red blood cell transfusion. The most common risk factors were hypertension, diabetes mellitus, dyslipidemia, chronic kidney disease, peripheral artery disease, coronary artery disease, cerebrovascular disease, heart failure and malignancy. Compromised hemodynamic state was the most common precipitating event in four patients. Other recognized precipitating events included surgical interventions, decompensated heart failure, gastrointestinal bleeding from gastric malignancy and methotrexate. Endoscopic findings revealed diffuse and circumferential black distal esophagus with abrupt transition at gastroesophageal junction and variable proximal extension at presentation. The 1-month mortality rate was 30%, mostly from severe underlying illness. In conclusion, acute esophageal necrosis is a rare cause of upper gastrointestinal bleeding that should be suspected in older patients with multiple comorbidities. Although associated with a high mortality rate, appropriate treatment may result in favorable outcome in most patients.


Subject(s)
Rare Diseases , Acute Disease , Aged , Humans , Male , Necrosis , Prognosis , Rare Diseases/complications , Retrospective Studies , Risk Factors
9.
Article in English | MEDLINE | ID: mdl-35055531

ABSTRACT

Exercise intolerance, a hallmark of patients with heart failure (HF), is associated with muscle weakness. However, its causative microcirculatory and muscle characteristics among those with preserved or reduced ejection fraction (HFpEF or HFrEF) phenotype is unclear. The musculoskeletal abnormalities that could result in impaired peripheral microcirculation are sarcopenia and muscle strength reduction in HF, implying lowered oxidative capacity and perfusion affect transport and oxygen utilization during exercise, an essential task from the microvascular muscle function. Besides that, skeletal muscle microcirculatory abnormalities have also been associated with exercise intolerance in HF patients who also present skeletal muscle myopathy. This cross-sectional study aimed to compare the muscle microcirculation dynamics via near-infrared spectroscopy (NIRS) response during an isokinetic muscle strength test and ultrasound-derived parameters (echo intensity was rectus femoris muscle, while the muscle thickness parameter was measured on rectus femoris and quadriceps femoris) in heart failure patients with HFpEF and HFrEF phenotypes and different functional severities (Weber Class A, B, and C). Twenty-eight aged-matched patients with HFpEF (n = 16) and HFrEF (n = 12) were assessed. We found phenotype differences among those with Weber C severity, with HFrEF patients reaching lower oxyhemoglobin (O2Hb, µM) (-10.9 ± 3.8 vs. -23.7 ± 5.7, p = 0.029) during exercise, while HFpEF reached lower O2Hb during the recovery period (-3.0 ± 3.4 vs. 5.9 ± 2.8, p = 0.007). HFpEF with Weber Class C also presented a higher echo intensity than HFrEF patients (29.7 ± 8.4 vs. 15.1 ± 6.8, p = 0.017) among the ultrasound-derived variables. Our preliminary study revealed more pronounced impairments in local microcirculatory dynamics in HFpEF vs. HFrEF patients during a muscle strength exercise, combined with muscle-skeletal abnormalities detected via ultrasound imaging, which may help explain the commonly observed exercise intolerance in HFpEF patients.


Subject(s)
Heart Failure , Musculoskeletal Abnormalities , Aged , Cross-Sectional Studies , Humans , Microcirculation , Muscle, Skeletal , Phenotype , Stroke Volume/physiology
10.
Clin Radiol ; 77(3): 188-194, 2022 03.
Article in English | MEDLINE | ID: mdl-34916046

ABSTRACT

AIM: To evaluate utilisation of a medical imaging call centre (MICC) at a multi-site, academic radiology department, focusing on communication of critical, urgent, or significant unexpected findings. MATERIALS AND METHODS: Institutional research ethics board approval was obtained. All calls made to MICC from 1 January to 31 December 2019 were reviewed retrospectively. The total number of calls, date, and reason of each call, level of report alert, and turnaround time (TAT) were recorded. Level 1, 2, and 3 alerts were defined as "potentially life-threatening new/unexpected findings", "could result in morbidity/mortality", or "not immediately life-threatening or urgent", respectively. TAT was defined as the time from alert request received by the MICC until acknowledgement of receipt by the referring physician, with a desired TAT of 60 min, 3 h, and 3 days for each level, respectively. RESULTS: The MICC received 29,799 calls in 2019, on average 2,483 (range 1,989-3,098) calls per month. The most common indications for contacting the MICC were to request imaging reports to be expedited (14,916 calls, 50%) and issuing report alerts to communicate unexpected or urgent findings (7,060 calls, 24%). Average number and range of calls for Level 1, 2, and 3 alerts were 57 (39-80), 345 (307-388), and 187 (127-215) per month, respectively. Average TAT for Level 1, 2, and 3 report alerts were 59 min, 2 h 26 min, and 19 h 39 min, respectively. CONCLUSION: The MICC received a large volume of calls and was a successful method for timely communication of unexpected or urgent imaging findings using a three-tiered alert system.


Subject(s)
Call Centers/statistics & numerical data , Communication , Diagnostic Imaging/statistics & numerical data , Radiology/statistics & numerical data , Diagnostic Imaging/classification , Emergencies/classification , Emergencies/epidemiology , Humans , Nurses/statistics & numerical data , Ontario , Radiologists/statistics & numerical data , Referral and Consultation/statistics & numerical data , Retrospective Studies , Time Factors
12.
Medicine (Baltimore) ; 100(31): e25368, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34397788

ABSTRACT

ABSTRACT: Blood flow restriction (BFR) training applied prior to a subsequent exercise has been used as a method to induce changes in oxygen uptake pulmonary kinetics (O2P) and exercise performance. However, the effects of a moderate-intensity training associated with BFR on a subsequent high-intensity exercise on O2P and cardiac output (QT) kinetics, exercise tolerance, and efficiency remain unknown.This prospective physiologic study was performed at the Exercise Physiology Lab, University of Brasilia. Ten healthy females (mean ±â€ŠSD values: age = 21.3 ±â€Š2.2 years; height = 1.6 ±â€Š0.07 m, and weight = 55.6 ±â€Š8.8 kg) underwent moderate-intensity training associated with or without BFR for 6 minutes prior to a maximal high-intensity exercise bout. O2P, heart rate, and QT kinetics and gross efficiency were obtained during the high-intensity constant workload exercise test.No differences were observed in O2P, heart rate, and QT kinetics in the subsequent high-intensity exercise following BFR training. However, exercise tolerance and gross efficiency were significantly greater after BFR (220 ±â€Š45 vs 136 ±â€Š30 seconds; P < .05, and 32.8 ±â€Š6.3 vs 27.1 ±â€Š5.4%; P < .05, respectively), which also resulted in lower oxygen cost (1382 ±â€Š227 vs 1695 ±â€Š305 mL min-1).We concluded that moderate-intensity BFR training implemented prior to a high-intensity protocol did not accelerate subsequent O2P and QT kinetics, but it has the potential to improve both exercise tolerance and work efficiency at high workloads.


Subject(s)
Exercise/physiology , Ischemic Preconditioning , Regional Blood Flow/physiology , Cross-Sectional Studies , Exercise Tolerance , Female , Heart Rate , Humans , Oxygen Consumption , Prospective Studies , Stroke Volume , Young Adult
13.
J Environ Manage ; 281: 111861, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33422911

ABSTRACT

Invasive macroalgae represent one of the major threats to marine biodiversity, ecosystem functioning and structure, as well as being important drivers of ecosystem services depletion. Many such species have become well established along the west coast of the Iberian Peninsula. However, the lack of information about the distribution of the invaders and the factors determining their occurrence make bioinvasions a difficult issue to manage. Such information is key to enabling the design and implementation of effective management plans. The present study aimed to map the current probability of presence of six invasive macroalgae: Grateloupia turuturu, Asparagopsis armata, Colpomenia peregrina, Sargassum muticum, Undaria pinnatifida, and Codium fragile ssp. fragile. For this purpose, an extensive field survey was carried out along the coast of the north-western Iberian Peninsula. Species distribution models (SDMs) were then used to map the presence probability of these invasive species throughout the study region on the basis of environmental and anthropogenic predictor variables. The southern Galician rias were identified as the main hotspots of macroalgal invasion, with a high probability of occurrence for most of the species considered. Conversely, the probability of presence on the Portuguese coast was generally low. Physico-chemical variables were the most important factors for predicting the distribution of invasive macroalgae contributing between 57.27 and 85.24% to the ensemble models. However, anthropogenic factors (including size of vessels, number of shipping lines, distance from ports, population density, etc.) considerably improved the estimates of the probability of occurrence for most of the target species. This study is one of the few to include anthropogenic factors in SDMs for invasive macroalgae. The findings suggest that management actions aimed at controlling these species should strengthen control and surveillance at ports, particularly in southern Galician rias. Early detection should be of main concern for risk assessment plans on the Portuguese coast.


Subject(s)
Seaweed , Biodiversity , Ecosystem , Europe , Introduced Species
15.
Phys Ther ; 100(12): 2246-2253, 2020 12 07.
Article in English | MEDLINE | ID: mdl-32941640

ABSTRACT

OBJECTIVE: The purpose of this study was to analyze the reliability (interrater and intrarater) and agreement (repeatability and reproducibility) properties of tapered flow resistive loading (TFRL) measures in patients with heart failure (HF). METHODS: For this cross-sectional study, participants were recruited from the cardiopulmonary rehabilitation program at the University of Brasilia from July 2015 to July 2016. All patients participated in the study, and 10 were randomly chosen for intrarater and interrater reliability testing. The 124 participants with HF (75% men) were 57.6 (SD = 1.81) years old and had a mean left ventricular ejection fraction of 38.9% (SD = 15%) and a peak oxygen consumption of 13.05 (SD = 5.3) mL·kg·min-1. The main outcome measures were the maximal inspiratory pressure (MIP) measured with a standard manovacuometer (SM) and the MIP and maximal dynamic inspiratory pressure (S-Index) obtained with TFRL. The S-Index reliability (interrater and intrarater) was examined by 2 evaluators, the S-Index repeatability was examined with 10 repetitions, and the reproducibility of the MIP and S-Index was measured with SM and TFRL, respectively. RESULTS: The reliability analysis revealed high S-Index interrater and intrarater reliability values (intraclass correlation coefficients [ICCs] of 0.89 [95% CI = 0.58-0.98] and 0.97 [95% CI = 0.89-0.99], respectively). Repeatability analyses revealed that 8 maneuvers were required to reach the maximum S-Index in 75.81% (95% CI = 68.27-83.34) of the population. The reproducibility of TFRL measures (S-Index = 68.8 [SD = 32.8] cm H2O; MIP = 66 [SD = 32.3] cm H2O) was slightly lower than that of the SM measurement (MIP = 70.1 [SD = 35.9] cm H2O). CONCLUSIONS: The TFRL device provided a reliable intrarater and interrater S-Index measure in patients with HF and had acceptable repeatability, requiring 8 maneuvers to produce a stable S-Index measure. The reproducibilities of the S-Index, MIP obtained with SM, and MIP obtained with TRFL were similar. IMPACT: TRFL is a feasible method to assess both MIP and the S-index as measures of inspiratory muscle strength in patients with HF and can be used for inspiratory muscle training, making the combined testing and training capabilities important in both clinical research and the management of patients with HF.


Subject(s)
Heart Failure/physiopathology , Maximal Respiratory Pressures , Respiratory Muscles/physiopathology , Cross-Sectional Studies , Exercise Test , Female , Humans , Male , Maximal Respiratory Pressures/instrumentation , Maximal Respiratory Pressures/methods , Middle Aged , Muscle Strength/physiology , Observer Variation , Oxygen Consumption , Reproducibility of Results , Stroke Volume , Ventricular Function, Left/physiology
16.
Vascul Pharmacol ; 133-134: 106781, 2020.
Article in English | MEDLINE | ID: mdl-32827678

ABSTRACT

INTRODUCTION: Stem cell-derived cardiac myocytes are potential sources for testing cardiocytoprotective molecules against ischemia/reperfusion injury in vitro. MATERIALS AND METHODS: Here we performed a systematic analysis of two different induced pluripotent stem cell lines (iPSC 3.4 and 4.1) and an embryonic stem cell (ESC) line-derived cardiac myocytes at two different developmental stages. Cell viability in simulated ischemia/reperfusion (SI/R)-induced injury and a known cardiocytoprotective NO-donor, S-nitroso-n-acetylpenicillamine (SNAP) was tested. RESULTS: After analysis of full embryoid bodies (EBs) and cardiac marker (VCAM and cardiac troponin I) positive cells of three lines at 6 conditions (32 different conditions altogether), we found significant SI/R injury-induced cell death in both full EBs and VCAM+ cardiac cells at later stage of their differentiation. Moreover, full EBs of the iPS 4.1 cell line after oxidative stress induction by SNAP was protected at day-8 samples. CONCLUSION: We have shown that 4.1 iPS-derived cardiomyocyte line could serve as a testing platform for cardiocytoprotection.


Subject(s)
Cell Differentiation , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/drug effects , Nitric Oxide Donors/pharmacology , Pluripotent Stem Cells/drug effects , S-Nitroso-N-Acetylpenicillamine/pharmacology , Cell Line , Cell Survival/drug effects , Humans , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Oxidative Stress/drug effects , Phenotype , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/pathology , Troponin I/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
18.
Nutrients ; 12(6)2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32580292

ABSTRACT

Obesity is a major risk factor for a plethora of metabolic disturbances including diabetes and cardiovascular disease. Accumulating evidence is showing that there is an adipose tissue depot-dependent relationship with obesity-induced metabolic dysfunction. While some adipose depots, such as subcutaneous fat, are generally metabolically innocuous, others such as visceral fat, are directly deleterious. A lesser known visceral adipose depot is the pericardial adipose tissue depot. We therefore set out to examine its transcriptional and morphological signature under chow and high-fat fed conditions, in comparison with other adipose depots, using a mouse model. Our results revealed that under chow conditions pericardial adipose tissue has uncoupling-protein 1 gene expression levels which are significantly higher than classical subcutaneous and visceral adipose depots. We also observed that under high-fat diet conditions, the pericardial adipose depot exhibits greatly upregulated transcript levels of inflammatory cytokines. Our results collectively indicate, for the first time, that the pericardial adipose tissue possesses a unique transcriptional and histological signature which has features of both a beige (brown fat-like) but also pro-inflammatory depot, such as visceral fat. This unique profile may be involved in metabolic dysfunction associated with obesity.


Subject(s)
Adipose Tissue/metabolism , Adipose Tissue/pathology , Gene Expression , Obesity/metabolism , Pericardium/metabolism , Pericardium/pathology , Adipogenesis/genetics , Adipose Tissue, Brown/metabolism , Animals , Diet, High-Fat , Inflammation/genetics , Male , Mice , Mice, Inbred C57BL , Obesity/pathology , Subcutaneous Fat/metabolism , Thermogenesis/genetics , Uncoupling Protein 1/genetics
20.
Physiother Theory Pract ; 36(5): 580-588, 2020 May.
Article in English | MEDLINE | ID: mdl-30321084

ABSTRACT

BACKGROUND: Early mobilization can be employed to minimize the duration of intensive care. However, a protocol combining neuromuscular electrical stimulation (NMES) with early mobilization has not yet been tested in ICU patients. Our aim was to assess the efficacy of NMES, exercise (EX), and combined therapy (NMES + EX) on duration of mechanical ventilation (MV) in critically ill patients. METHODS: The participants in this randomized double-blind trial were prospectively recruited within 24 hours following admission to the intensive care unit of a tertiary hospital. Eligible patients had 18 years of age or older; MV for less than 72 hours; and no known neuromuscular disease. Computer-generated permuted block randomization was used to assign patients to NMES, EX, NMES + EX, or standard care (control group). The main endpoint was duration of MV. Clinical characteristics were also evaluated and intention to treat analysis was employed. RESULTS: One hundred forty-four patients were assessed for eligibility to participate in the trial, 51 of whom were enrolled and randomly allocated into four groups: 11 patients in the NMES group, 13 in the EX group, 12 in the NMES + EX group, and 15 in the control group (CG). Duration of MV (days) was significantly shorter in the combined therapy (5.7 ± 1.1) and NMEN (9.0 ± 7.0) groups in comparison to CG (14.8 ± 5.4). CONCLUSIONS: NMES + EX consisting of NMES and active EXs was well tolerated and resulted in shorter duration of MV in comparison to standard care or isolated therapy (NMES or EX alone).


Subject(s)
Critical Illness/therapy , Electric Stimulation Therapy/methods , Exercise Therapy/methods , Respiration, Artificial , Adult , Aged , Combined Modality Therapy , Double-Blind Method , Female , Humans , Intensive Care Units , Male , Middle Aged , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...