Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Front Neurol ; 15: 1356614, 2024.
Article in English | MEDLINE | ID: mdl-38638308

ABSTRACT

Tmc1 and Tmc2 are essential pore-forming subunits of mechanosensory transduction channels localized to the tips of stereovilli in auditory and vestibular hair cells of the inner ear. To investigate expression and function of Tmc1 and Tmc2 in vestibular organs, we used quantitative polymerase chain reaction (qPCR), fluorescence in situ hybridization - hairpin chain reaction (FISH-HCR), immunostaining, FM1-43 uptake and we measured vestibular evoked potentials (VsEPs) and vestibular ocular reflexes (VORs). We found that Tmc1 and Tmc2 showed dynamic developmental changes, differences in regional expression patterns, and overall expression levels which differed between the utricle and saccule. These underlying changes contributed to unanticipated phenotypic loss of VsEPs and VORs in Tmc1 KO mice. In contrast, Tmc2 KO mice retained VsEPs despite the loss of the calcium buffering protein calretinin, a characteristic biomarker of mature striolar calyx-only afferents. Lastly, we found that neonatal Tmc1 gene replacement therapy is sufficient to restore VsEP in Tmc1 KO mice for up to six months post-injection.

2.
3.
Cells ; 11(24)2022 12 09.
Article in English | MEDLINE | ID: mdl-36552747

ABSTRACT

Peroxisome Biogenesis Disorders (PBD) and Zellweger syndrome spectrum disorders (ZSD) are rare genetic multisystem disorders that include hearing impairment and are associated with defects in peroxisome assembly, function, or both. Mutations in 13 peroxin (PEX) genes have been found to cause PBD-ZSD with ~70% of patients harboring mutations in PEX1. Limited research has focused on the impact of peroxisomal disorders on auditory function. As sensory hair cells are particularly vulnerable to metabolic changes, we hypothesize that mutations in PEX1 lead to oxidative stress affecting hair cells of the inner ear, subsequently resulting in hair cell degeneration and hearing loss. Global deletion of the Pex1 gene is neonatal lethal in mice, impairing any postnatal studies. To overcome this limitation, we created conditional knockout mice (cKO) using Gfi1Creor VGlut3Cre expressing mice crossed to floxed Pex1 mice to allow for selective deletion of Pex1 in the hair cells of the inner ear. We find that Pex1 excision in inner hair cells (IHCs) leads to progressive hearing loss associated with significant decrease in auditory brainstem responses (ABR), specifically ABR wave I amplitude, indicative of synaptic defects. Analysis of IHC synapses in cKO mice reveals a decrease in ribbon synapse volume and functional alterations in exocytosis. Concomitantly, we observe a decrease in peroxisomal number, indicative of oxidative stress imbalance. Taken together, these results suggest a critical function of Pex1 in development and maturation of IHC-spiral ganglion synapses and auditory function.


Subject(s)
Cochlea , Hair Cells, Auditory, Inner , Hearing Loss , Synapses , Animals , Mice , ATPases Associated with Diverse Cellular Activities/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Cochlea/innervation , Cochlea/metabolism , Deafness/genetics , Deafness/metabolism , Hair Cells, Auditory, Inner/metabolism , Hearing/physiology , Hearing Loss/genetics , Hearing Loss/metabolism , Mice, Knockout , Synapses/genetics , Synapses/metabolism
5.
Ear Hear ; 43(2): 582-591, 2022.
Article in English | MEDLINE | ID: mdl-34534157

ABSTRACT

OBJECTIVES: Peroxisome Biogenesis Disorders in the Zellweger Spectrum (PBD-ZSD) are autosomal recessive disorders characterized by defects in peroxisome function, biosynthesis, and/or assembly. Despite its frequent documentation, hearing loss associated with PBD-ZSD has not been extensively characterized. The purpose of this retrospective natural history study was to better characterize the hearing loss associated with PBD-ZSD and to provide additional insight into the evaluation and management of PBD-ZSD patients with hearing loss. DESIGN: Audiological data from medical records of 42 patients with PBD-ZSD or D-bifunctional protein deficiency were collected from an ongoing longitudinal retrospective natural history study. An initial dataset of 300 audiograms and/or audiometric test results from the 42 patients were used to characterize the degree of hearing loss, type of hearing loss, relationships between air and bone conduction thresholds, age-related changes in hearing loss, and benefit with amplification. RESULTS: The majority of PBD-ZSD patients in this study presented with moderately-severe to severe hearing loss and relatively slow rates of longitudinal changes in hearing sensitivity. Improvements in hearing thresholds were observed with use of hearing aid amplification. Though bone conduction data were limited, air-bone gaps and air conduction threshold fluctuations observed in several patients suggest there may be an increased occurrence of mixed hearing losses in PBD-ZSD populations. CONCLUSION: The results of this retrospective study provide insight into the hearing loss associated with PBD-ZSD, but also emphasize the need for more complete assessments of hearing loss type and middle ear function in these patients. The addition of more comprehensive datasets to the ongoing natural history study will enhance our understanding of the pathophysiology underlying PBD-ZSD and guide the development of targeted evaluation and management recommendations for patients with PBD-ZSD.


Subject(s)
Deafness , Hearing Loss , Peroxisomal Disorders , Zellweger Syndrome , Female , Humans , Male , Retrospective Studies , Zellweger Syndrome/diagnosis , Zellweger Syndrome/metabolism
7.
Mol Ther ; 28(12): 2662-2676, 2020 12 02.
Article in English | MEDLINE | ID: mdl-32818431

ABSTRACT

Usher syndrome is a syndromic form of hereditary hearing impairment that includes sensorineural hearing loss and delayed-onset retinitis pigmentosa (RP). Type 1 Usher syndrome (USH1) is characterized by congenital profound sensorineural hearing impairment and vestibular areflexia, with adolescent-onset RP. Systemic treatment with antisense oligonucleotides (ASOs) targeting the human USH1C c.216G>A splicing mutation in a knockin mouse model of USH1 restores hearing and balance. Herein, we explore the effect of delivering ASOs locally to the ear to treat hearing and vestibular dysfunction associated with Usher syndrome. Three localized delivery strategies were investigated in USH1C mice: inner ear injection, trans-tympanic membrane injection, and topical tympanic membrane application. We demonstrate, for the first time, that ASOs delivered directly to the ear correct Ush1c expression in inner ear tissue, improve cochlear hair cell transduction currents, restore vestibular afferent irregularity, spontaneous firing rate, and sensitivity to head rotation, and successfully recover hearing thresholds and balance behaviors in USH1C mice. We conclude that local delivery of ASOs to the middle and inner ear reach hair cells and can rescue both hearing and balance. These results also demonstrate the therapeutic potential of ASOs to treat hearing and balance deficits associated with Usher syndrome and other ear diseases.


Subject(s)
Cell Cycle Proteins/genetics , Cytoskeletal Proteins/genetics , Ear, Middle/drug effects , Genetic Therapy/methods , Hair Cells, Auditory/drug effects , Mutation , Oligonucleotides, Antisense/administration & dosage , Usher Syndromes/genetics , Usher Syndromes/therapy , Vestibule, Labyrinth/drug effects , Administration, Topical , Animals , Animals, Newborn , Disease Models, Animal , Female , Gene Knock-In Techniques , Hair Cells, Auditory/metabolism , Hearing/drug effects , Injections , Male , Mice , Mice, Inbred C57BL , Tympanic Membrane/drug effects , Vestibule, Labyrinth/metabolism
8.
Nat Med ; 25(7): 1123-1130, 2019 07.
Article in English | MEDLINE | ID: mdl-31270503

ABSTRACT

Since most dominant human mutations are single nucleotide substitutions1,2, we explored gene editing strategies to disrupt dominant mutations efficiently and selectively without affecting wild-type alleles. However, single nucleotide discrimination can be difficult to achieve3 because commonly used endonucleases, such as Streptococcus pyogenes Cas9 (SpCas9), can tolerate up to seven mismatches between guide RNA (gRNA) and target DNA. Furthermore, the protospacer-adjacent motif (PAM) in some Cas9 enzymes can tolerate mismatches with the target DNA3,4. To circumvent these limitations, we screened 14 Cas9/gRNA combinations for specific and efficient disruption of a nucleotide substitution that causes the dominant progressive hearing loss, DFNA36. As a model for DFNA36, we used Beethoven mice5, which harbor a point mutation in Tmc1, a gene required for hearing that encodes a pore-forming subunit of mechanosensory transduction channels in inner-ear hair cells6. We identified a PAM variant of Staphylococcus aureus Cas9 (SaCas9-KKH) that selectively and efficiently disrupted the mutant allele, but not the wild-type Tmc1/TMC1 allele, in Beethoven mice and in a DFNA36 human cell line. Adeno-associated virus (AAV)-mediated SaCas9-KKH delivery prevented deafness in Beethoven mice up to one year post injection. Analysis of current ClinVar entries revealed that ~21% of dominant human mutations could be targeted using a similar approach.


Subject(s)
Alleles , Gene Editing , Hearing Loss, Sensorineural/prevention & control , Membrane Proteins/genetics , Animals , CRISPR-Associated Protein 9/physiology , Cell Line , Cells, Cultured , Dependovirus/genetics , Disease Models, Animal , Hearing Loss, Sensorineural/genetics , Humans , Mice , Mice, Inbred C57BL
9.
Nat Commun ; 10(1): 734, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30737404

ABSTRACT

The original version of this Article contained errors in Fig. 5. In panels i and j the three rightmost x-axis labels inadvertently read 'Tmc1' instead of 'Tmc2'. These errors have been corrected in both the PDF and HTML versions of the Article.

10.
Nat Commun ; 10(1): 236, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30670701

ABSTRACT

Fifty percent of inner ear disorders are caused by genetic mutations. To develop treatments for genetic inner ear disorders, we designed gene replacement therapies using synthetic adeno-associated viral vectors to deliver the coding sequence for Transmembrane Channel-Like (Tmc) 1 or 2 into sensory hair cells of mice with hearing and balance deficits due to mutations in Tmc1 and closely related Tmc2. Here we report restoration of function in inner and outer hair cells, enhanced hair cell survival, restoration of cochlear and vestibular function, restoration of neural responses in auditory cortex and recovery of behavioral responses to auditory and vestibular stimulation. Secondarily, we find that inner ear Tmc gene therapy restores breeding efficiency, litter survival and normal growth rates in mouse models of genetic inner ear dysfunction. Although challenges remain, the data suggest that Tmc gene therapy may be well suited for further development and perhaps translation to clinical application.


Subject(s)
Deafness/genetics , Genetic Predisposition to Disease , Genetic Therapy/methods , Hearing Loss/genetics , Labyrinth Diseases/genetics , Membrane Proteins/genetics , Animals , Deafness/therapy , Hair Cells, Auditory/physiology , Hair Cells, Vestibular/physiology , Hearing Loss/therapy , Labyrinth Diseases/therapy , Mice , Mice, Mutant Strains
11.
Sci Rep ; 8(1): 12125, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30108230

ABSTRACT

Mouse Tmc1 and Tmc2 are required for sensory transduction in cochlear and vestibular hair cells. Homozygous Tmc1∆/∆ mice are deaf, Tmc2∆/∆ mice have normal hearing, and double homozygous Tmc1∆/∆; Tmc2∆/∆ mice have deafness and profound vestibular dysfunction. These phenotypes are consistent with their different spatiotemporal expression patterns. Tmc1 expression is persistent in cochlear and vestibular hair cells, whereas Tmc2 expression is transient in cochlear hair cells but persistent in vestibular hair cells. On the basis of these findings, we hypothesized that persistent Tmc2 expression in mature cochlear hair cells could restore auditory function in Tmc1∆/∆ mice. To express Tmc2 in mature cochlear hair cells, we generated a transgenic mouse line, Tg[PTmc1::Tmc2], in which Tmc2 cDNA is expressed under the control of the Tmc1 promoter. The Tg[PTmc1::Tmc2] transgene slightly but significantly restored hearing in young Tmc1∆/∆ mice, though hearing thresholds were elevated with age. The elevation of hearing thresholds was associated with deterioration of sensory transduction in inner hair cells and loss of outer hair cell function. Although sensory transduction was retained in outer hair cells, their stereocilia eventually degenerated. These results indicate distinct roles and requirements for Tmc1 and Tmc2 in mature cochlear hair cells.


Subject(s)
Hair Cells, Auditory/pathology , Hearing Loss, Sensorineural/pathology , Membrane Proteins/metabolism , Stereocilia/pathology , Animals , Disease Models, Animal , Hair Cells, Auditory/cytology , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/ultrastructure , Hair Cells, Vestibular/metabolism , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/genetics , Hearing Tests , Homozygote , Humans , Mechanotransduction, Cellular , Membrane Proteins/genetics , Mice , Mice, Knockout , Microscopy, Electron, Scanning , Mutation , Patch-Clamp Techniques , Promoter Regions, Genetic/genetics , Stereocilia/ultrastructure
12.
Sci Rep ; 8(1): 12124, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30108254

ABSTRACT

Recent work has demonstrated that transmembrane channel-like 1 protein (TMC1) is an essential component of the sensory transduction complex in hair cells of the inner ear. A closely related homolog, TMC2, is expressed transiently in the neonatal mouse cochlea and can enable sensory transduction in Tmc1-null mice during the first postnatal week. Both TMC1 and TMC2 are expressed at adult stages in mouse vestibular hair cells. The extent to which TMC1 and TMC2 can substitute for each other is unknown. Several biophysical differences between TMC1 and TMC2 suggest these proteins perform similar but not identical functions. To investigate these differences, and whether TMC2 can substitute for TMC1 in mature hair cells, we generated a knock-in mouse model allowing Cre-inducible expression of Tmc2. We assayed for changes in hair cell sensory transduction and auditory and vestibular function in Tmc2 knockin mice (Tm[Tmc2]) in the presence or absence of endogenous Tmc1, Tmc2 or both. Our results show that expression of Tm[TMC2] restores sensory transduction in vestibular hair cells and transiently in cochlear hair cells in the absence of TMC1. The cellular rescue leads to recovery of balance but not auditory function. We conclude that TMC1 provides some additional necessary function, not provided by TMC2.


Subject(s)
Hair Cells, Auditory, Inner/metabolism , Hair Cells, Vestibular/metabolism , Membrane Proteins/metabolism , Postural Balance/physiology , Animals , Gene Knock-In Techniques , Hearing/physiology , Mechanotransduction, Cellular/physiology , Membrane Proteins/genetics , Mice , Mice, Knockout , Models, Animal , Transgenes/genetics
13.
PLoS One ; 13(8): e0201713, 2018.
Article in English | MEDLINE | ID: mdl-30157177

ABSTRACT

Hearing and balance depend upon the precise morphogenesis and mechanosensory function of stereocilia, the specialized structures on the apical surface of sensory hair cells in the inner ear. Previous studies of Grxcr1 mutant mice indicated a critical role for this gene in control of stereocilia dimensions during development. In this study, we analyzed expression of the paralog Grxcr2 in the mouse and evaluated auditory and vestibular function of strains carrying targeted mutations of the gene. Peak expression of Grxcr2 occurs during early postnatal development of the inner ear and GRXCR2 is localized to stereocilia in both the cochlea and in vestibular organs. Homozygous Grxcr2 deletion mutants exhibit significant hearing loss by 3 weeks of age that is associated with developmental defects in stereocilia bundle orientation and organization. Despite these bundle defects, the mechanotransduction apparatus assembles in relatively normal fashion as determined by whole cell electrophysiological evaluation and FM1-43 uptake. Although Grxcr2 mutants do not exhibit overt vestibular dysfunction, evaluation of vestibular evoked potentials revealed subtle defects of the mutants in response to linear accelerations. In addition, reduced Grxcr2 expression in a hypomorphic mutant strain is associated with progressive hearing loss and bundle defects. The stereocilia localization of GRXCR2, together with the bundle pathologies observed in the mutants, indicate that GRXCR2 plays an intrinsic role in bundle orientation, organization, and sensory function in the inner ear during development and at maturity.


Subject(s)
Cochlea/cytology , Cochlea/growth & development , Glutaredoxins/metabolism , Morphogenesis , Stereocilia/metabolism , Amino Acid Sequence , Animals , Gene Expression Regulation, Developmental , Genetic Loci/genetics , Glutaredoxins/chemistry , Glutaredoxins/genetics , Hearing Loss/genetics , Hearing Loss/pathology , Humans , Mechanotransduction, Cellular , Mice , Models, Molecular , Mutation , Protein Conformation , Species Specificity
14.
Am J Pathol ; 188(6): 1334-1344, 2018 06.
Article in English | MEDLINE | ID: mdl-29545198

ABSTRACT

Choroid plexus tumors and ciliary body medulloepithelioma are predominantly pediatric neoplasms. Progress in understanding the pathogenesis of these tumors has been hindered by their rarity and lack of models that faithfully recapitulate the disease. Here, we find that endogenous Myc proto-oncogene protein is down-regulated in the forebrain neuroepithelium, whose neural plate border domains give rise to the anterior choroid plexus and ciliary body. To uncover the consequences of persistent Myc expression, MYC expression was forced in multipotent neural precursors (nestin-Cre:Myc), which produced fully penetrant models of choroid plexus carcinoma and ciliary body medulloepithelioma. Nestin-mediated MYC expression in the epithelial cells of choroid plexus leads to the regionalized formation of choroid plexus carcinoma in the posterior domain of the lateral ventricle choroid plexus and the fourth ventricle choroid plexus that is accompanied by loss of multiple cilia, up-regulation of protein biosynthetic machinery, and hydrocephalus. Parallel MYC expression in the ciliary body leads also to up-regulation of protein biosynthetic machinery. Additionally, Myc expression in human choroid plexus tumors increases with aggressiveness of disease. Collectively, our findings expose a select vulnerability of the neuroepithelial lineage to postnatal tumorigenesis and provide a new mouse model for investigating the pathogenesis of these rare pediatric neoplasms.


Subject(s)
Carcinogenesis/pathology , Choroid Plexus Neoplasms/pathology , Ciliary Body/pathology , Disease Models, Animal , Neurons/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Adolescent , Adult , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Child , Child, Preschool , Choroid Plexus Neoplasms/genetics , Choroid Plexus Neoplasms/metabolism , Ciliary Body/metabolism , Female , Humans , Infant , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/pathology , Proto-Oncogene Mas , Proto-Oncogene Proteins c-myc/genetics , Young Adult
15.
Nat Biotechnol ; 35(3): 264-272, 2017 03.
Article in English | MEDLINE | ID: mdl-28165476

ABSTRACT

Because there are currently no biological treatments for hearing loss, we sought to advance gene therapy approaches to treat genetic deafness. We focused on Usher syndrome, a devastating genetic disorder that causes blindness, balance disorders and profound deafness, and studied a knock-in mouse model, Ush1c c.216G>A, for Usher syndrome type IC (USH1C). As restoration of complex auditory and balance function is likely to require gene delivery systems that target auditory and vestibular sensory cells with high efficiency, we delivered wild-type Ush1c into the inner ear of Ush1c c.216G>A mice using a synthetic adeno-associated viral vector, Anc80L65, shown to transduce 80-90% of sensory hair cells. We demonstrate recovery of gene and protein expression, restoration of sensory cell function, rescue of complex auditory function and recovery of hearing and balance behavior to near wild-type levels. The data represent unprecedented recovery of inner ear function and suggest that biological therapies to treat deafness may be suitable for translation to humans with genetic inner ear disorders.


Subject(s)
Carrier Proteins/genetics , Genetic Therapy/methods , Hearing Loss, Sensorineural/therapy , Usher Syndromes/genetics , Usher Syndromes/therapy , Vestibular Diseases/therapy , Animals , Cell Cycle Proteins , Cytoskeletal Proteins , Female , Gene Knock-In Techniques , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/genetics , Male , Mice , Mice, Inbred C57BL , Plasmids/administration & dosage , Plasmids/genetics , Recovery of Function/genetics , Treatment Outcome , Vestibular Diseases/diagnosis , Vestibular Diseases/genetics
16.
Science ; 344(6184): 1241062, 2014 May 09.
Article in English | MEDLINE | ID: mdl-24812404

ABSTRACT

Hearing loss is the most common sensory deficit in humans, with some estimates suggesting up to 300 million affected individuals worldwide. Both environmental and genetic factors contribute to hearing loss and can cause death of sensory cells and neurons. Because these cells do not regenerate, the damage tends to accumulate, leading to profound deafness. Several biological strategies to restore auditory function are currently under investigation. Owing to the success of cochlear implants, which offer partial recovery of auditory function for some profoundly deaf patients, potential biological therapies must extend hearing restoration to include greater auditory acuity and larger patient populations. Here, we review the latest gene, stem-cell, and molecular strategies for restoring auditory function in animal models and the prospects for translating these approaches into viable clinical therapies.


Subject(s)
Cell Engineering/methods , Genetic Therapy/methods , Hair Cells, Auditory/physiology , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/therapy , Mechanotransduction, Cellular , Regeneration , Stem Cell Transplantation/methods , Animals , Cochlea/cytology , Cochlea/physiology , Humans , Mice , Spiral Ganglion/cytology , Spiral Ganglion/physiology
17.
Neuron ; 79(3): 504-15, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23871232

ABSTRACT

Sensory transduction in auditory and vestibular hair cells requires expression of transmembrane channel-like (Tmc) 1 and 2 genes, but the function of these genes is unknown. To investigate the hypothesis that TMC1 and TMC2 proteins are components of the mechanosensitive ion channels that convert mechanical information into electrical signals, we recorded whole-cell and single-channel currents from mouse hair cells that expressed Tmc1, Tmc2, or mutant Tmc1. Cells that expressed Tmc2 had high calcium permeability and large single-channel currents, while cells with mutant Tmc1 had reduced calcium permeability and reduced single-channel currents. Cells that expressed Tmc1 and Tmc2 had a broad range of single-channel currents, suggesting multiple heteromeric assemblies of TMC subunits. The data demonstrate TMC1 and TMC2 are components of hair cell transduction channels and contribute to permeation properties. Gradients in TMC channel composition may also contribute to variation in sensory transduction along the tonotopic axis of the mammalian cochlea.


Subject(s)
Biophysical Phenomena/physiology , Hair Cells, Auditory/physiology , Mechanotransduction, Cellular/physiology , Membrane Proteins/metabolism , Acoustic Stimulation , Adenoviridae/genetics , Age Factors , Animals , Auditory Perception/physiology , Biophysical Phenomena/drug effects , Biophysical Phenomena/genetics , Calcium/metabolism , Calcium/pharmacology , Cell Count , Cells, Cultured , Dose-Response Relationship, Drug , Evoked Potentials, Auditory, Brain Stem/genetics , Hair Cells, Auditory/metabolism , In Vitro Techniques , Mechanotransduction, Cellular/genetics , Membrane Potentials/genetics , Membrane Proteins/genetics , Mice , Mice, Transgenic , Mutation/genetics , Organ of Corti/cytology , Patch-Clamp Techniques , Transduction, Genetic
19.
J Clin Invest ; 121(12): 4796-809, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22105175

ABSTRACT

Inner ear hair cells convert the mechanical stimuli of sound, gravity, and head movement into electrical signals. This mechanotransduction process is initiated by opening of cation channels near the tips of hair cell stereocilia. Since the identity of these ion channels is unknown, and mutations in the gene encoding transmembrane channel-like 1 (TMC1) cause hearing loss without vestibular dysfunction in both mice and humans, we investigated the contribution of Tmc1 and the closely related Tmc2 to mechanotransduction in mice. We found that Tmc1 and Tmc2 were expressed in mouse vestibular and cochlear hair cells and that GFP-tagged TMC proteins localized near stereocilia tips. Tmc2 expression was transient in early postnatal mouse cochlear hair cells but persisted in vestibular hair cells. While mice with a targeted deletion of Tmc1 (Tmc1(Δ) mice) were deaf and those with a deletion of Tmc2 (Tmc2(Δ) mice) were phenotypically normal, Tmc1(Δ)Tmc2(Δ) mice had profound vestibular dysfunction, deafness, and structurally normal hair cells that lacked all mechanotransduction activity. Expression of either exogenous TMC1 or TMC2 rescued mechanotransduction in Tmc1(Δ)Tmc2(Δ) mutant hair cells. Our results indicate that TMC1 and TMC2 are necessary for hair cell mechanotransduction and may be integral components of the mechanotransduction complex. Our data also suggest that persistent TMC2 expression in vestibular hair cells may preserve vestibular function in humans with hearing loss caused by TMC1 mutations.


Subject(s)
Deafness/genetics , Hair Cells, Auditory, Inner/physiology , Hair Cells, Vestibular/physiology , Mechanotransduction, Cellular/physiology , Membrane Proteins/physiology , Animals , Cells, Cultured/drug effects , Cells, Cultured/metabolism , Female , Fluorescent Dyes/metabolism , Genetic Complementation Test , Gentamicins/metabolism , Hair Cells, Auditory, Inner/ultrastructure , Hair Cells, Vestibular/ultrastructure , Male , Mechanotransduction, Cellular/genetics , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Protein Isoforms/biosynthesis , Protein Isoforms/genetics , Protein Isoforms/physiology , Pyridinium Compounds/metabolism , Quaternary Ammonium Compounds/metabolism , RNA, Messenger/biosynthesis , Stereocilia/physiology , Stereocilia/ultrastructure
20.
J Neurosci ; 31(34): 12241-50, 2011 Aug 24.
Article in English | MEDLINE | ID: mdl-21865467

ABSTRACT

The polycystic kidney disease-1 (Pkd1) gene encodes a large transmembrane protein (polycystin-1, or PC-1) that is reported to function as a fluid flow sensor in the kidney. As a member of the transient receptor potential family, PC-1 has also been hypothesized to play a role in the elusive mechanoelectrical transduction (MET) channel in inner ear hair cells. Here, we analyze two independent mouse models of PC-1, a knock-in (KI) mutant line and a hair cell-specific inducible Cre-mediated knock-out line. Both models exhibit normal MET channel function at neonatal ages despite hearing loss and ultrastructural abnormalities of sterecilia that remain properly polarized at adult ages. These findings demonstrate that PC-1 plays an essential role in stereocilia structure and maintenance but not directly in MET channel function or planar cell polarity. We also demonstrate that PC-1 is colocalized with F-actin in hair cell stereocilia in vivo, using a hemagglutinin-tagged PC-1 KI mouse model, and in renal epithelial cell microvilli in vitro. These results not only demonstrate a novel role for PC-1 in the cochlea, but also suggest insight into the development of polycystic kidney disease.


Subject(s)
Cilia/metabolism , Hair Cells, Auditory, Inner/metabolism , Mechanotransduction, Cellular/physiology , Organ of Corti/physiology , TRPP Cation Channels/physiology , Animals , Animals, Newborn , Cilia/genetics , Disease Models, Animal , Female , Gene Knock-In Techniques , Hair Cells, Auditory, Inner/cytology , HeLa Cells , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/metabolism , Hearing Loss, Sensorineural/pathology , Humans , Male , Mechanotransduction, Cellular/genetics , Mice , Mice, Knockout , Mice, Transgenic , TRPP Cation Channels/deficiency , TRPP Cation Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...