Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioelectrochemistry ; 158: 108692, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38547778

ABSTRACT

This study explores the impact of pulsed electric field (PEF) application on oat seedling growth and stress tolerance. PEF treatment (99 monopolar, rectangular pulses lasting 10 µs each, with a frequency of 13 Hz and a nominal electric field strength of 2250 V/cm) was applied at two growth stages: (i) when the seedlings had 0.2 cm roots emerging from the kernel, and (ii) when they had a 0.4 cm shoot emerging from the kernel. Post-treatment, the seedlings were hydroponically grown for 8 days. To induce stress, the hydroponic medium was augmented with PEG (15 %) to induce drought stress and NaCl (150 mM) to induce salinity stress. Results demonstrate that applying PEF improved the growth of the root and shoot of oat seedlings. This effect was more pronounced when applied to more developed seedlings. When PEF was applied during the later stage of germination, seedlings exposed to salinity stress showed enhanced shoot growth compared to the control. Under the studied conditions, the application of PEF had no impact on the growth of seedlings under drought stress.


Subject(s)
Avena , Germination , Seedlings , Stress, Physiological , Seedlings/growth & development , Avena/growth & development , Electricity , Droughts
2.
Biochem Biophys Rep ; 35: 101515, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37601450

ABSTRACT

Two electrotechnologies: pulsed electric fields (PEF) and moderate electric field (MEF) in combination with vacuum impregnation of glycerol as cryoprotectant were used to increase the freezing tolerance of rocket leaves. Rocket leaves were treated with PEF using a nominal field strength of 1200 V/cm or MEF at different combinations of voltage and frequency. Leaves were then immersed in a glycerol solution at 32, 36 and 40% (w/v) under vacuum for 26 min. After this treatment, the leaves were allowed to rest for 3 days before they were frozen and thawed. Leaf survival was assessed at different time points after thawing with microscopic observations and wilting tests. When the viability of the leaves was assessed 5 min after thawing, 60-68% of the leaves in the batch survived. There was no difference in the levels of surviving leaves when PEF and the lowest-tested voltage used in MEF were tested. However, from the leaves surviving 5 min after thawing, approximately half of them die over a 24 h period after thawing.

3.
Bioelectrochemistry ; 142: 107912, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34358981

ABSTRACT

Horticultural crops have a low tolerance to dehydration. In this paper, we show that the reversible electroporation (200 monopolar, rectangular pulses of 50 µs pulse duration, 760 µs between pulses and nominal field strength of 650 V/cm) of Thai basil leaves followed by 24 h resting before hot air drying at 40 °C enhanced the survivability of the tissues at certain levels of dehydration (moisture ratio = 0.2 and 0.1). However, this increased survival was rather limited. Through measurements of metabolic heat production during resting, rehydration kinetics, respiration and photosynthesis of the rehydrated leaves, we show that resting after the application of a reversible pulse-electric field (PEF) may allow a phase of hardening that has a protective effect on the cells, thus decreasing damage during the subsequent drying phase. Increased preservation of cell vitality would be associated with a more turgid and fresh-like rehydrated product, as cells would have the capacity to retain the rehydration water.


Subject(s)
Electroporation/methods , Food Preservation/methods , Plant Leaves/chemistry , Cell Survival , Ocimum basilicum
4.
Compr Rev Food Sci Food Saf ; 16(5): 895-905, 2017 Sep.
Article in English | MEDLINE | ID: mdl-33371613

ABSTRACT

Over the last several decades, γ-aminobutyric acid (GABA) has attracted much attention due to its diverse physiological implications in plants, animals, and microorganisms. GABA naturally occurs in plant materials and its concentrations may vary considerably, from traces up to µmol/g (dry basis) depending on plant matrix, germination stage, and processing conditions, among other factors. However, due to its important biological activities, considerable interest has been shown by both food and pharmaceutical industries to improve its concentration in plants. Natural and conventional treatments such as mechanical and cold stimulation, anoxia, germination, enzyme treatment, adding exogenous glutamic acid (Glu) or gibberellins, and bacterial fermentation have been shown effective to increase the GABA concentration in several plant materials. However, some of these treatments can modify the nutritional, organoleptic, and/or functional properties of plants. Recent consumer demand for food products which are "healthy," safe and, having added benefits (nutraceuticals/functional components) has led to explore new ways to improve the content of bioactive compounds while maintaining desirable organoleptic and physicochemical properties. Along this line, nonthermal processing technologies (such as high-pressure processing, pulsed electric fields, and ultrasound, among others) have been shown as means to induce the biosynthesis and accumulation of GABA in plant foods; and the main findings so far reported are presented in this review. Moreover, the most novel tools for the identification of metabolic response in plant materials based on GABA analysis will be also described.

5.
Bioelectrochemistry ; 112: 153-7, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26936113

ABSTRACT

The impregnation of leafy vegetables with cryoprotectants using a combination of vacuum impregnation (VI) and pulsed electric fields (PEF) has been proposed by our research group as a method of improving their freezing tolerance and consequently their general quality after thawing. In this study, we have investigated the metabolic consequences of the combination of these unit operations on spinach. The vacuum impregnated spinach leaves showed a drastic decrease in the porosity of the extracellular space. However, at maximum weight gain, randomly located air pockets remained, which may account for oxygen-consuming pathways in the cells being active after VI. The metabolic activity of the impregnated leaves showed a drastic increase that was further enhanced by the application of PEF to the impregnated tissue. Impregnating the leaves with trehalose by VI led to a significant accumulation of trehalose-6-phosphate (T6P), however, this was not further enhanced by PEF. It is suggested that the accumulation of T6P in the leaves may increase metabolic activity, and increase tissue resistance to abiotic stress.


Subject(s)
Electricity , Plant Leaves/drug effects , Plant Leaves/metabolism , Spinacia oleracea/drug effects , Spinacia oleracea/metabolism , Trehalose/pharmacology , Cryopreservation , Porosity , Sugar Phosphates/metabolism , Trehalose/analogs & derivatives , Trehalose/metabolism , Vacuum
6.
Crit Rev Food Sci Nutr ; 44(3): 139-54, 2004.
Article in English | MEDLINE | ID: mdl-15239369

ABSTRACT

Growing of vegetables in the field, harvesting, handling in the packing house and storage are events in the lifetime of vegetables that are analysed from the point of view of the complex series of physiological transitions taking place in each of these events. Water is the major factor limiting plant metabolism and plants have developed fascinating mechanisms to cope with this limiting factor. Therefore, water relations (water, pressure and osmotic potential) are used as criteria for discussing plant stress physiology aspects such as osmotic, elastic adjustment and cold acclimation, as well as mechanical stress when the vegetable is harvested and during handling in the packing house. Consequences for the storage potential and quality of the vegetable are discussed. After harvesting, the postharvest cell has the ability to complete a complex series of physiological transitions that will influence vegetable quality andfurther processing operations. Metabolic changes in the cytosol, cell membrane and cell wall are described.


Subject(s)
Food Handling/methods , Vegetables , Water/metabolism , Stress, Mechanical , Vegetables/metabolism , Vegetables/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...