Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Placenta ; 150: 31-38, 2024 May.
Article in English | MEDLINE | ID: mdl-38583303

ABSTRACT

INTRODUCTION: Fetal growth restriction (FGR) may affect placental transfer of key nutrients to the fetus, such as the fatty acid docosahexaenoic acid (DHA). Major facilitator superfamily domain containing 2A (MFSD2A) has been described as a specific DHA carrier in placenta, but its expression has not been studied in FGR. The aim of this study was to evaluate for the first time the placental MFSD2A levels in late-FGR pregnancies and the maternal and cord plasma DHA. METHODS: 87 pregnant women from a tertial reference center were classified into late-FGR (N = 18) or control (N = 69). Fatty acid profile was determined in maternal and cord venous plasma, as well as placental levels of MFSD2A and of insulin mediators like phospho-protein kinase B (phospho-AKT) and phospho-extracellular regulated kinase (phospho-ERK). RESULTS: Maternal fatty acid profile did not differ between groups. Nevertheless, late-FGR cord vein presented higher content of saturated fatty acids than control, producing a concomitant decrease in the percentage of some unsaturated fatty acids. In the late-FGR group, a lower DHA fetal/maternal ratio was observed when using percentages, but not with concentrations. No alterations were found in the expression of MFSD2A in late-FGR placentas, nor in phospho-AKT or phospho-ERK. DISCUSSION: MFSD2A protein expression was not altered in late-FGR placentas, in line with no differences in cord DHA concentration between groups. The increase in the saturated fatty acid content of late-FGR cord might be a compensatory mechanism to ensure fetal energy supply, decreasing other fatty acids percentage. Future studies are warranted to elucidate if altered saturated fatty acid profile in late-FGR fetuses might predispose them to postnatal catch-up and to long-term health consequences.


Subject(s)
Docosahexaenoic Acids , Fetal Growth Retardation , Placenta , Humans , Female , Pregnancy , Docosahexaenoic Acids/metabolism , Docosahexaenoic Acids/blood , Placenta/metabolism , Fetal Growth Retardation/metabolism , Adult , Fetal Blood/metabolism , Fetal Blood/chemistry , Symporters/metabolism , Case-Control Studies
2.
Int J Mol Sci ; 25(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38255939

ABSTRACT

Asthma is a multifactorial condition that can be associated with obesity. The phenotypes of asthma in lean and obese patients are different, with proinflammatory signatures being further elevated in the latter. Both obesity and asthma are associated with alterations in intestinal barrier function and immunity, and with the composition of the intestinal microbiota and food consumption. In this study, we aimed to establish an organoid model to test the hypothesis that the intestinal content of lean and obese, allergic, asthmatic children differentially regulates epithelial intestinal gene expression. A model of mouse jejunum intestinal organoids was used. A group of healthy, normal-weight children was used as a control. The intestinal content of asthmatic obese children differentially induced the expression of inflammatory and mitochondrial response genes (Tnf-tumor necrosis factor, Cd14, Muc13-mucin 13, Tff2-Trefoil factor 2 and Tff3, Cldn1-claudin 1 and 5, Reg3g-regenerating family member 3 gamma, mt-Nd1-NADH dehydrogenase 1 and 6, and mt-Cyb-mitochondrial cytochrome b) via the RAGE-advanced glycosylation end product-specific receptor, NF-κB-nuclear factor kappa b and AKT kinase signal transduction pathways. Fecal homogenates from asthmatic normal-weight and obese children induce a differential phenotype in intestinal organoids, in which the presence of obesity plays a major role.


Subject(s)
Asthma , Pediatric Obesity , Child , Animals , Mice , Humans , Feces , Claudin-1 , Cytochromes b , NF-kappa B
3.
Biomed Pharmacother ; 164: 115000, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37301136

ABSTRACT

Skin damage due to severe burns can compromise patient life. Current tissue engineering methods allow the generation of human skin substitutes for clinical use. However, this process is time-consuming, as the keratinocytes required to generate artificial skin have a low proliferation rate in culture. In this study, we evaluated the pro-proliferative effects of three natural biomolecules isolated from olive oil: phenolic extract (PE), DL-3,4-dihydroxyphenyl glycol (DHFG), and oleuropein (OLP), on cultured human skin keratinocytes. The results showed that PE and OLP increased the proliferation of immortalized human skin keratinocytes, especially at concentrations of 10 and 5 µg/mL, respectively, without altering cell viability. In contrast, DHFG did not produce a significant improvement in keratinocyte proliferation. In normal human skin keratinocytes obtained from skin biopsies, we found that PE, but not OLP, could increase the number of keratinocyte colonies and the area occupied by these cells. Furthermore, this effect was associated with increased KI-67 and Proliferating cell nuclear antigen (PCNA) gene expression. Thus, we propose that PE positively affects keratinocyte proliferation and could be used in culture protocols to improve bioartificial skin generation by tissue engineering.


Subject(s)
Keratinocytes , Skin , Humans , Olive Oil/pharmacology , Cells, Cultured , Keratinocytes/metabolism , Tissue Engineering
4.
Bioinformatics ; 39(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36495189

ABSTRACT

MOTIVATION: ANOVA Simultaneous Component Analysis (ASCA) is a popular method for the analysis of multivariate data yielded by designed experiments. Meaningful associations between factors/interactions of the experimental design and measured variables in the dataset are typically identified via significance testing, with permutation tests being the standard go-to choice. However, in settings with large numbers of variables, like omics (genomics, transcriptomics, proteomics and metabolomics) experiments, the 'holistic' testing approach of ASCA (all variables considered) often overlooks statistically significant effects encoded by only a few variables (biomarkers). RESULTS: We hereby propose Variable-selection ASCA (VASCA), a method that generalizes ASCA through variable selection, augmenting its statistical power without inflating the Type-I error risk. The method is evaluated with simulations and with a real dataset from a multi-omic clinical experiment. We show that VASCA is more powerful than both ASCA and the widely adopted false discovery rate controlling procedure; the latter is used as a benchmark for variable selection based on multiple significance testing. We further illustrate the usefulness of VASCA for exploratory data analysis in comparison to the popular partial least squares discriminant analysis method and its sparse counterpart. AVAILABILITY AND IMPLEMENTATION: The code for VASCA is available in the MEDA Toolbox at https://github.com/josecamachop/MEDA-Toolbox (release v1.3). The simulation results and motivating example can be reproduced using the repository at https://github.com/josecamachop/VASCA/tree/v1.0.0 (DOI 10.5281/zenodo.7410623). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genomics , Proteomics , Genomics/methods , Computer Simulation , Metabolomics , Analysis of Variance
5.
Front Bioeng Biotechnol ; 10: 876734, 2022.
Article in English | MEDLINE | ID: mdl-35662841

ABSTRACT

In the present work, we evaluated the potential of maslinic acid (MA) to improve currently available keratinocyte culture methods for use in skin tissue engineering. Results showed that MA can increase cell proliferation and WST-1 activity of human keratinocytes after 24, 48, and 72 h, especially at the concentration of 5 µg/ml, without affecting cell viability. This effect was associated to a significant increase of KI-67 protein expression and upregulation of several genes associated to cell proliferation (PCNA) and differentiation (cytokeratins, intercellular junctions and basement membrane related genes). When human keratinocytes were isolated from skin biopsies, we found that MA at the concentration of 5 µg/ml significantly increased the efficiency of the explant and the cell dissociation methods. These results revealed the positive effects of MA to optimize human keratinocyte culture protocols for use in skin tissue engineering.

6.
Horm Res Paediatr ; 95(2): 112-119, 2022.
Article in English | MEDLINE | ID: mdl-34758469

ABSTRACT

BACKGROUND: Studies on childhood obesity mainly focus on the genetic component and on the lifestyle that may be associated with the development of obesity. However, the study of perinatal factors in their programming effect toward future obesity in children or adults is somewhat more recent, and there are still mechanisms to be disentangled. SUMMARY: In this narrative review, a comprehensive route based on the influence of some early factors in life in the contribution to later obesity development is presented. Maternal pre-pregnancy BMI and gestational weight gain have been pointed out as independent determinants of infant later adiposity. Lifestyle interventions could have an impact on pregnant mothers through epigenetic mechanisms capable of redirecting the genetic expression of their children toward a future healthy weight and body composition and dietary-related microbiome modifications in mothers and newborns might also be related. After birth, infant feeding during the first months of life is directly associated with its body composition and nutritional status. From this point of view, all the expert committees in the world are committed to promote exclusive breastfeeding up to 6 months of age and to continue at least until the first year of life together with complementary feeding based on healthy dietary patterns such as Mediterranean Diet. KEY MESSAGES: To develop future effective programs to tackle early obesity, it is necessary not only by controlling lifestyle behaviors like infant feeding but also understanding the role of other mechanisms like the effect of perinatal factors such as maternal diet during pregnancy, epigenetics, or microbiome.


Subject(s)
Gestational Weight Gain , Pediatric Obesity , Adiposity , Adult , Body Mass Index , Breast Feeding , Child , Female , Humans , Infant , Infant, Newborn , Nutritional Status , Pediatric Obesity/epidemiology , Pediatric Obesity/etiology , Pregnancy
7.
Medicine (Baltimore) ; 99(46): e22722, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33181648

ABSTRACT

In general terms, fetal growth restriction (FGR) is considered the impossibility of achieving the genetically determined potential size. In the vast majority of cases, it is related to uteroplacental insufficiency. Although its origin remains unknown and causes are only known in 30% of cases, it is believed to be related to an interaction of environmental and genetic factors with either a fetal or maternal origin. One hypothesis is that alterations in the gastrointestinal microbiota composition, and thus alteration in the immune response, could play a role in FGR development. We performed an observational, prospective study in a subpopulation affected with FGR to elucidate the implications of this microbiota on the FGR condition.A total of 63 fetuses with FGR diagnosed in the third trimester as defined by the Delphi consensus, and 63 fetuses with fetal growth appropriate for gestational age will be recruited. Obstetric and nutritional information will be registered by means of specific questionnaires. We will collect maternal fecal samples between 30 to 36 weeks, intrapartum samples (maternal feces, maternal and cord blood) and postpartum samples (meconium and new-born feces at 6 weeks of life). Samples will be analyzed in the Department of Biochemistry and Molecular Biology II, Nutrition and Food Technology Institute of the University of Granada (UGR), for the determination of the gastrointestinal microbiota composition and its relationship with inflammatory biomarkers.This study will contribute to a better understanding of the influence of gastrointestinal microbiota and related inflammatory biomarkers in the development of FGR.Trial registration: NCT04047966. Registered August 7, 2019, during the recruitment stage. Retrospectively registered. Ongoing research.


Subject(s)
Fetal Growth Retardation/immunology , Fetus/immunology , Microbiota/immunology , Pregnant Women , Adult , Biomarkers/analysis , Case-Control Studies , Cordocentesis/methods , Delphi Technique , Female , Fetal Development/immunology , Fetal Development/physiology , Fetus/physiopathology , Gestational Age , Humans , Microbiota/physiology , Pregnancy , Prospective Studies , Spain
8.
Biomedicines ; 8(9)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32961859

ABSTRACT

Background: Asthma is a multifactorial condition where patients with identical clinical diagnoses do not have the same clinical history or respond to treatment. This clinical heterogeneity is reflected in the definition of two main endotypes. We aimed to explore the metabolic and microbiota signatures that characterize the clinical allergic asthma phenotype in obese children. Methods: We used a multi-omics approach combining clinical data, plasma and fecal inflammatory biomarkers, metagenomics, and metabolomics data in a cohort of allergic asthmatic children. Results: We observed that the obese allergic asthmatic phenotype was markedly associated with higher levels of leptin and lower relative proportions of plasma acetate and a member from the Clostridiales order. Moreover, allergic children with a worse asthma outcome showed higher levels of large unstained cells, fecal D lactate and D/L lactate ratio, and with a higher relative proportion of plasma creatinine and an unclassified family member from the RF39 order belonging to the Mollicutes class. Otherwise, children with persistent asthma presented lower levels of plasma citrate and dimethylsulfone. Conclusion: Our integrative approach shows the molecular heterogeneity of the allergic asthma phenotype while highlighting the use of omics technologies to examine the clinical phenotype at a more holistic level.

9.
Metabolism ; 105: 154187, 2020 04.
Article in English | MEDLINE | ID: mdl-32084430

ABSTRACT

BACKGROUND: S100A4 is a metastasis-associated protein also reported as a promising marker for dysfunctional white adipose tissue (WAT) and insulin resistance (IR) in adult and adolescent populations. OBJECTIVE: We aimed to evaluate the association between the protein S100A4 and obesity and IR in children and during pubertal development. DESIGN AND METHODS: The study design consisted of three cross-sectional populations of 249, 11 and 19 prepubertal children respectively (named study population 1, 2 and 3), and a longitudinal population of 53 girls undergoing sexual maturation (study population 4). All subjects were classified into experimental groups according to their sex, obesity and IR status. All study populations counted on anthropometry, glucose, and lipid metabolism, inflammation and cardiovascular biomarkers as well as S100A4 plasma levels measured. The study population 1 was intended as the discovery population in which to elucidate the relationship between Obesity-IR and S100A4 plasma levels in prepubertal children. The cross-sectional populations 2 and 3 further counted on WAT gene expression data for investigating the molecular basis of this association. Instead, the longitudinal study population 4 presented blood whole-genome DNA methylation data at each temporal record, allowing deepening into the Obesity-IR-S1004 relationship during puberty as well as deciphering plausible epigenetic mechanisms altering S100A4 plasma levels. RESULTS: S100A4 plasma levels were strongly associated with several metabolic and anthropometric outcomes, namely IR, in prepubertal non-diabetic obese children. We also found highly significant positive associations during the course of puberty between the increase in S100A4 levels and the increase in HOMA-IR (P = 0.0003, FDR = 0.005) and insulin levels (P = 0.0003, FDR = 0.005). Methylation in two-enhancer related CpG sites of the S100A4 region (cg07245635 and cg10447638) was associated with IR biomarkers at the prepubertal stage and with longitudinal changes in these measurements. We further reported an association between visceral WAT (vWAT) S100A4 expression and HOMA-IR, insulin levels and BMI Z-Score, but not with circulating S100A4. CONCLUSIONS: We report for the first time the association of S100A4 with IR and WAT dysfunction in prepubertal populations as well as how the change in plasma S100A4 levels accompanies longitudinal trajectories of IR in children during pubertal development. Moreover, we propose epigenetic changes in two methylation sites and an altered S100A4 vWAT expression as plausible molecular mechanisms underlying this disturbance in obesity.


Subject(s)
Insulin Resistance , Obesity/blood , Obesity/metabolism , S100 Calcium-Binding Protein A4/blood , Anthropometry , Blood Glucose/metabolism , Child , Child, Preschool , Cross-Sectional Studies , Epigenesis, Genetic , Female , Gene Expression Regulation/genetics , Humans , Lipid Metabolism , Longitudinal Studies , Male , Puberty/physiology , Sex Characteristics , Sexual Maturation
10.
Nutrients ; 12(1)2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31906372

ABSTRACT

The aim of this systematic review is to evaluate whether the use of probiotics has any effect on the components of metabolic syndrome (MetS) before patients develop type 2 diabetes. A qualitative systematic review, following the Cochrane methodology, and a comprehensive literature search of randomized controlled trials (RCTs) were conducted in PubMed and Scopus from inception until 4 July 2019. According to our inclusion criteria, nine clinical studies were finally analyzed, corresponding to six RCTs. Probiotics intake in patients with MetS resulted in improvements in body mass index, blood pressure, glucose metabolism, and lipid profile in some studies. Regarding inflammatory biomarkers, probiotics also positively affected the soluble vascular cell adhesion molecule 1 (sVCAM-1), interleukine-6 (IL-6), tumor necrosis factor α (TNF-α), vascular endothelial growth factor (VEGF), and thrombomodulin. Despite the diversity of the published studies, the intake of probiotics for patients with MetS may offer a discrete improvement in some of the clinical characteristics of the MetS and a decrease in inflammatory biomarkers. Nevertheless, these beneficial effects seem to be marginal compared to drug therapy and a healthy lifestyle and clinically non-relevant.


Subject(s)
Metabolic Syndrome/therapy , Probiotics/therapeutic use , Adolescent , Adult , Aged , Biomarkers/blood , Female , Humans , Interleukin-6/blood , Male , Metabolic Syndrome/blood , Metabolic Syndrome/microbiology , Middle Aged , Randomized Controlled Trials as Topic , Thrombomodulin/blood , Treatment Outcome , Tumor Necrosis Factor-alpha/blood , Vascular Cell Adhesion Molecule-1/blood , Vascular Endothelial Growth Factor A/blood , Young Adult
11.
Nutrients ; 11(11)2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31731683

ABSTRACT

Essential oils (EOs) are a mixture of natural, volatile, and aromatic compounds obtained from plants. In recent years, several studies have shown that some of their benefits can be attributed to their antimicrobial, antioxidant, anti-inflammatory, and also immunomodulatory properties. Therefore, EOs have been proposed as a natural alternative to antibiotics or for use in combination with antibiotics against multidrug-resistant bacteria in animal feed and food preservation. Most of the results come from in vitro and in vivo studies; however, very little is known about their use in clinical studies. A systematic and comprehensive literature search was conducted in PubMed, Embase®, and Scopus from December 2014 to April 2019 using different combinations of the following keywords: essential oils, volatile oils, antimicrobial, antioxidant, immunomodulation, and microbiota. Some EOs have demonstrated their efficacy against several foodborne pathogens in vitro and model food systems; namely, the inhibition of S. aureus, V. cholerae, and C. albicans has been observed. EOs have shown remarkable antioxidant activities when used at a dose range of 0.01 to 10 mg/mL in cell models, which can be attributed to their richness in phenolic compounds. Moreover, selected EOs exhibit immunomodulatory activities that have been mainly attributed to their ability to modify the secretion of cytokines.


Subject(s)
Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Immunologic Factors/pharmacology , Oils, Volatile/pharmacology , Animals , Food Preservation/methods , Humans
12.
Nutrients ; 11(8)2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31370223

ABSTRACT

Previous studies have reported that probiotics may improve clinical and inflammatory parameters in patients with obesity and metabolic syndrome (MetS). Lactobacillus (L.) reuteri V3401 has shown promising results on the components of MetS in animal studies. We aimed to evaluate the effects of L. reuteri V3401 together with healthy lifestyle recommendations on adult patients with MetS. METHODS: We carried out a randomized, crossover, placebo-controlled, single-center trial in which we included 53 adult patients newly diagnosed with MetS. Patients were block randomly allocated by body mass index (BMI) and sex to receive a capsule containing either the probiotic L. reuteri V3401 (5 × 109 colony-forming units) or a placebo once daily for 12 weeks. Anthropometric variables, biochemical and inflammatory biomarkers, as well as the gastrointestinal microbiome composition were determined. RESULTS: There were no differences between groups in the clinical characteristics of MetS. However, we found that interleukin-6 (IL-6) and soluble vascular cell adhesion molecule 1 (sVCAM-1) diminished by effect of the treatment with L. reuteri V3401. Analysis of the gastrointestinal microbiome revealed a rise in the proportion of Verrucomicrobia. CONCLUSIONS: Consumption of L. reuteri V3401 improved selected inflammatory parameters and modified the gastrointestinal microbiome. Further studies are needed to ascertain additional beneficial effects of other probiotic strains in MetS as well as the mechanisms by which such effects are exerted.


Subject(s)
Gastrointestinal Microbiome , Inflammation/metabolism , Limosilactobacillus reuteri , Metabolic Syndrome/blood , Metabolic Syndrome/therapy , Adult , Biomarkers/blood , Cross-Over Studies , Double-Blind Method , Female , Humans , Inflammation/blood , Male , Metabolic Syndrome/metabolism , Probiotics
13.
Sci Rep ; 9(1): 3979, 2019 Mar 08.
Article in English | MEDLINE | ID: mdl-30850679

ABSTRACT

Tenomodulin (TNMD) is a type II transmembrane glycoprotein that has been recently linked to obesity, and it is highly expressed in obese adipose tissue. Several sex-dependent associations have been observed between single-nucleotide polymorphisms (SNPs) of the TNMD gene, which is located in the X-chromosome, and obesity, type 2 diabetes mellitus (T2DM), and metabolic syndrome in adults. On the other hand, results are lacking for children. We aimed (i) to study the association between TNMD genetic variants and metabolic complications related to childhood obesity and (ii) to investigate the function of TNMD in human adipocytes. We conducted a case-control, multicenter study in 915 Spanish children and demonstrated significant positive associations between TNMD genetic variants and BMI z-score, waist circumference, fasting glucose, and insulin resistance in boys, highlighting the SNP rs4828038. Additionally, we showed a BMI-adjusted inverse association with waist circumference in girls. Second, in vitro experiments revealed that TNMD is involved in adipogenesis, along with glucose and lipid metabolism in differentiated adipocytes, and these effects may be mediated through AMPK activation. Hence, these results suggest that TNMD genetic variants could be potentially useful as early life risk indicators for obesity and T2DM. In addition, we support the fact that TNMD exhibits significant metabolic functions in adipocytes.


Subject(s)
Diabetes Mellitus, Type 2 , Adipocytes , Adult , Child , Female , Humans , Male , Membrane Proteins/genetics , Obesity , Polymorphism, Single Nucleotide , X Chromosome
14.
BMC Complement Altern Med ; 18(1): 306, 2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30453950

ABSTRACT

BACKGROUND: Obesity is characterized by increased fat mass and is associated with the development of insulin resistance syndrome (IRS), usually known as metabolic syndrome. The alteration of the intestinal microbiota composition has a role in the development of IRS associated with obesity, and probiotics, which are live microorganisms that confer a health benefit to the host, contribute to restore intestinal microbiota homeostasis and lower peripheral tissue insulin resistance. We aim to evaluate the effects of the probiotic strain Lactobacillus reuteri (L. reuteri) V3401 on the composition of intestinal microbiota, markers of insulin resistance and biomarkers of inflammation, cardiovascular risk, and hepatic steatosis in patients with overweight and obesity exhibiting IRS. METHODS/DESIGN: We describe a randomized, double-blind, crossover, placebo-controlled, and single-centre trial. Sixty participants (aged 18 to 65 years) diagnosed with IRS will be randomized in a 1:1 ratio to receive either a daily dose of placebo or 5 × 109 colony-forming units of L. reuteri V3401. The study will consist of two intervention periods of 12 weeks separated by a washout period of 6 weeks and preceded by another washout period of 2 weeks. The primary outcome will be the change in plasma lipopolysaccharide (LPS) levels at 12 weeks. Secondary outcomes will include anthropometric parameters, lipid profile, glucose metabolism, microbiota composition, hepatic steatosis, and inflammatory and cardiovascular biomarkers. Blood and stool samples will be collected at baseline, at the midpoint (only stool samples) and immediately after each intervention period. Luminex technology will be used to measure interleukins. For statistical analysis, a mixed ANOVA model will be employed to calculate changes in the outcome variables. DISCUSSION: This is the first time that L. reuteri V3401 will be evaluated in patients with IRS. Therefore, this study will provide valuable scientific information about the effects of this strain in metabolic syndrome patients. TRIAL REGISTRATION: The trial has been retrospectively registered in ClinicalTrials.gov on the 23rd November 2016 (ID: NCT02972567 ), during the recruitment phase.


Subject(s)
Limosilactobacillus reuteri/physiology , Metabolic Syndrome/drug therapy , Obesity/drug therapy , Probiotics/administration & dosage , Adolescent , Adult , Aged , Biomarkers/blood , Cardiovascular Diseases/blood , Cardiovascular Diseases/etiology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/immunology , Double-Blind Method , Fatty Liver/blood , Fatty Liver/etiology , Fatty Liver/genetics , Fatty Liver/immunology , Female , Gastrointestinal Microbiome , Humans , Insulin Resistance , Male , Metabolic Syndrome/complications , Metabolic Syndrome/immunology , Metabolic Syndrome/microbiology , Middle Aged , Obesity/complications , Obesity/immunology , Obesity/microbiology , Risk Factors , Young Adult
15.
Sci Data ; 4: 170186, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29231922

ABSTRACT

We investigated whether the administration of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 modulate the expression of genes in the intestinal mucosa of obese Zucker rats. Forty-eight Zucker-Leprfa/fa and 16 Zucker lean Lepr+/fa rats were used. Eight Zucker lean Lepr+/fa and 8 Zucker-Leprfa/fa rats were euthanized as a reference. The remaining 40 Zucker-Leprfa/fa rats were then assigned to receive 1010 colony forming units (CFU) of one of the three probiotic strains, a mixture of L. paracasei CNCM I-4034 and B. breve CNCM I-4035, or a placebo by oral administration for 30 days. An additional group of 8 Zucker lean Lepr+/fa rats received the placebo for 30 days. Over 27,000 rat genes were studied using a DNA array. Four animals per group were used. Total RNA was extracted from intestinal mucosa and cDNA was synthesized, fragmented and labeled. Labeled cDNA was hybridized using GeneChip kits, and the latter were scanned. Intensity values of each probe were processed and normalized to obtain an individual value for each set of probes.


Subject(s)
Intestinal Mucosa , Obesity/genetics , Animals , Gene Expression Profiling , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Obesity/pathology , Probiotics/administration & dosage , Rats , Rats, Zucker
16.
Int J Mol Sci ; 18(7)2017 Jul 11.
Article in English | MEDLINE | ID: mdl-28696379

ABSTRACT

Obesity and asthma are two chronic conditions that affect millions of people. Genetic and lifestyle factors such as diet, physical activity, and early exposure to micro-organisms are important factors that may contribute to the escalating prevalence of both conditions. The prevalence of asthma is higher in obese individuals. Recently, two major phenotypes of asthma with obesity have been described: one phenotype of early-onset asthma that is aggravated by obesity, and a second phenotype of later-onset asthma that predominantly affects women. Systemic inflammation and mechanical effect, both due to the expansion of the adipose tissue, have been proposed as the main reasons for the association between obesity and asthma. However, the mechanisms involved are not yet fully understood. Moreover, it has also been suggested that insulin resistance syndrome can have a role in the association between these conditions. The intestinal microbiota is an important factor in the development of the immune system, and can be considered a link between obesity and asthma. In the obese state, higher lipopolysaccharide (LPS) serum levels as a consequence of a microbiota dysbiosis have been found. In addition, changes in microbiota composition result in a modification of carbohydrate fermentation capacity, therefore modifying short chain fatty acid (SCFA) levels. The main objective of this review is to summarize the principal findings that link obesity and asthma.


Subject(s)
Asthma/metabolism , Obesity/metabolism , Adipokines/blood , Adipokines/metabolism , Animals , Asthma/blood , Gastrointestinal Microbiome/physiology , Humans , Lipopolysaccharides/blood , Obesity/blood
17.
Sci Rep ; 7(1): 1939, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28512356

ABSTRACT

We have previously reported that administration of Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036 to obese Zucker-Lepr fa/fa rats attenuates liver steatosis and exerts anti-inflammatory effects. The goal of the present work was to investigate the modulation of gene expression in intestinal mucosa samples of obese Zucker-Lepr fa/fa rats fed the probiotic strains using a DNA microarray and postgenomic techniques. We also measured secretory IgA content in the gut and lipopolysaccharide (LPS)-binding protein (LBP) in serum. Expression of three genes (Adamdec1, Ednrb and Ptgs1/Cox1) was up-regulated in the intestinal mucosa of the obese rats compared with that in the rats when they were still lean. Probiotic administration down-regulated expression of Adamdec1 and Ednrb at the mRNA and protein levels and that of Ptgs1/Cox1 at the mRNA level, and this effect was in part mediated by a decrease in both macrophage and dendritic cell populations. Probiotic treatment also increased secretory IgA content and diminished the LBP concentration. Based on results reported in this work and else where, we propose a possible mechanism of action for these bacterial strains.


Subject(s)
ADAM Proteins/genetics , Cyclooxygenase 1/genetics , Enteritis/etiology , Gastrointestinal Microbiome , Intestinal Mucosa/metabolism , Membrane Proteins/genetics , Probiotics , Receptor, Endothelin B/genetics , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Gene Expression , Intestinal Mucosa/pathology , Macrophages/immunology , Macrophages/metabolism , Obesity , Phenotype , Rats , Rats, Zucker
18.
Int J Mol Sci ; 17(7)2016 Jun 30.
Article in English | MEDLINE | ID: mdl-27376273

ABSTRACT

Over the last several years, the increasing prevalence of obesity has favored an intense study of adipose tissue biology and the precise mechanisms involved in adipocyte differentiation and adipogenesis. Adipocyte commitment and differentiation are complex processes, which can be investigated thanks to the development of diverse in vitro cell models and molecular biology techniques that allow for a better understanding of adipogenesis and adipocyte dysfunction associated with obesity. The aim of the present work was to update the different animal and human cell culture models available for studying the in vitro adipogenic differentiation process related to obesity and its co-morbidities. The main characteristics, new protocols, and applications of the cell models used to study the adipogenesis in the last five years have been extensively revised. Moreover, we depict co-cultures and three-dimensional cultures, given their utility to understand the connections between adipocytes and their surrounding cells in adipose tissue.


Subject(s)
Adipose Tissue/metabolism , Models, Biological , Obesity/pathology , Adipogenesis , Adipose Tissue/cytology , Animals , Cell Culture Techniques , Cell Differentiation , Coculture Techniques , Humans , Obesity/metabolism
19.
Mol Cell Endocrinol ; 431: 101-8, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27181211

ABSTRACT

The present study was undertaken to investigate the effects of C-atrial natriuretic peptide (C-ANP4-23) in human adipose-derived stem cells differentiated into adipocytes over 10 days (1 µM for 4 h). The intracellular cAMP, cGMP and protein kinase A levels were determined by ELISA and gene and protein expression were determined by qRT-PCR and Western blot, respectively, in the presence or absence of C-ANP4-23. The levels of lipolysis and glucose uptake were also determined. C-ANP4-23 treatment significantly increased the intracellular cAMP levels and the gene expression of glucose transporter type 4 (GLUT4) and protein kinase, AMP-activated, alpha 1 catalytic subunit (AMPK). Western blot showed a significant increase in GLUT4 and phosphor-AMPKα levels. Importantly, the adenylate cyclase inhibitor SQ22536 abolished these effects. Additionally, C-ANP4-23 increased glucose uptake by 2-fold. Our results show that C-ANP4-23 enhances glucose metabolism and might contribute to the development of new peptide-based therapies for metabolic diseases.


Subject(s)
Adipocytes/metabolism , Atrial Natriuretic Factor/metabolism , Cell Differentiation/physiology , Glucose/metabolism , Peptide Fragments/metabolism , AMP-Activated Protein Kinases/metabolism , Carbohydrate Metabolism/physiology , Cells, Cultured , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic GMP/metabolism , Gene Expression/physiology , Glucose Transporter Type 4/metabolism , Humans , Lipolysis/physiology
20.
PLoS One ; 11(3): e0152550, 2016.
Article in English | MEDLINE | ID: mdl-27023799

ABSTRACT

Obesity is characterized by an excessive accumulation of fat in adipose tissue, which is associated with oxidative stress and chronic inflammation. Excessive H2O2 levels are degraded by catalase (CAT), the activity of which is decreased in obesity. We investigated the effects of inhibition of catalase activity on metabolism and inflammation by incubating human differentiated adipocytes with 10 mM 3-amino-1,2,4-triazole (3-AT) for 24 h. As expected, the treatment decreased CAT activity and increased intracellular H2O2 levels significantly. Glutathione peroxidase (GPX) activity was also reduced, and the gene expression levels of the antioxidant enzymes GPX4 and peroxiredoxins (1, 3 and 5) were inhibited. Interestingly, this occurred along with lower mRNA levels of the transcription factors nuclear factor (erythroid 2-like 2) and forkhead box O, which are involved in redox homeostasis. However, superoxide dismutase activity and expression were increased. Moreover, 3-AT led to nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and increased tumor necrosis alpha and interleukin 6 protein and gene expression levels, while lowering peroxisome proliferator-activated receptor gamma (PPARγ) mRNA and protein levels. These alterations were accompanied by an altered glucose and lipid metabolism. Indeed, adipocytes treated with 3-AT showed reduced basal glucose uptake, reduced glucose transporter type 4 gene and protein expression, reduced lipolysis, reduced AMP-activated protein kinase activation and reduced gene expression of lipases. Our results indicate that increased H2O2 levels caused by 3-AT treatment impair the antioxidant defense system, lower PPARγ expression and initiate inflammation, thus affecting glucose and lipid metabolism in human differentiated adipocytes.


Subject(s)
Adipocytes/metabolism , Adipocytes/pathology , Amitrole/pharmacology , Cell Differentiation/drug effects , Hydrogen Peroxide/metabolism , Inflammation/metabolism , Adipocytes/drug effects , Adult , Antioxidants/metabolism , Catalase/antagonists & inhibitors , Catalase/metabolism , Glucose/metabolism , Humans , Intracellular Space/metabolism , Lipid Metabolism/drug effects , PPAR gamma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...