Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1333249, 2024.
Article in English | MEDLINE | ID: mdl-38628362

ABSTRACT

Biostimulants (Bio-effectors, BEs) comprise plant growth-promoting microorganisms and active natural substances that promote plant nutrient-acquisition, stress resilience, growth, crop quality and yield. Unfortunately, the effectiveness of BEs, particularly under field conditions, appears highly variable and poorly quantified. Using random model meta-analyses tools, we summarize the effects of 107 BE treatments on the performance of major crops, mainly conducted within the EU-funded project BIOFECTOR with a focus on phosphorus (P) nutrition, over five years. Our analyses comprised 94 controlled pot and 47 field experiments under different geoclimatic conditions, with variable stress levels across European countries and Israel. The results show an average growth/yield increase by 9.3% (n=945), with substantial differences between crops (tomato > maize > wheat) and growth conditions (controlled nursery + field (Seed germination and nursery under controlled conditions and young plants transplanted to the field) > controlled > field). Average crop growth responses were independent of BE type, P fertilizer type, soil pH and plant-available soil P (water-P, Olsen-P or Calcium acetate lactate-P). BE effectiveness profited from manure and other organic fertilizers, increasing soil pH and presence of abiotic stresses (cold, drought/heat or salinity). Systematic meta-studies based on published literature commonly face the inherent problem of publication bias where the most suspected form is the selective publication of statistically significant results. In this meta-analysis, however, the results obtained from all experiments within the project are included. Therefore, it is free of publication bias. In contrast to reviews of published literature, our unique study design is based on a common standardized protocol which applies to all experiments conducted within the project to reduce sources of variability. Based on data of crop growth, yield and P acquisition, we conclude that application of BEs can save fertilizer resources in the future, but the efficiency of BE application depends on cropping systems and environments.

2.
Fungal Biol ; 126(5): 356-365, 2022 05.
Article in English | MEDLINE | ID: mdl-35501031

ABSTRACT

Successful application of microbial biofertilizers, such as phosphorus (P) solubilizing fungi to agroecosystems, is constrained from the lack of knowledge about their ecology; for example in terms of how they respond to an external input of carbon (C) to get established in the soil. In two soil incubation experiments we examined the performance of the P solubilizing fungus Penicillium aculeatum in non-sterile and semi-sterile (γ-irradiated) soil with different C and P sources. Results from the first experiment with C sources showed that starch and cellulose generally improved P solubilization by P. aculeatum measured as water extractable P (Pwep), though only significantly in non-sterile soil. This coincided with an increased population density of P. aculeatum measured with a hygromycin B resistant strain of this fungus. Soil respiration used to measure soil microbial activity was overall much higher in treatments with C compounds than without C in both non-sterile and semi-sterile soil. However, soil respiration was highest with cellulose in semi-sterile soil, especially in combination with P. aculeatum. Hence, for the second experiment with P sources (tricalcium phosphate (TCP) and sewage sludge ash) cellulose was used as a C source for P. aculeatum growth in all treatments. Main results showed that P. aculeatum in combination with cellulose soil amendment increased soil Pwep independent of soil sterilization and P source treatments. Soil resin P (Pres) and microbial P (Pmic), which represents stocks of potentially plant available P, were also affected from P. aculeatum inoculation. Increased soil Pres from TCP and sewage sludge ash was observed with P. aculeatum independent of soil type. On the other hand soil Pmic was higher after P. aculeatum inoculation only in semi-sterile soil. Population density of P. aculeatum measured with qPCR was maintained or increased in non-sterile and semi-sterile soil, respectively, compared to the original inoculum load of P. aculeatum. In conclusion, our results underline the importance of C source addition for P. aculeatum if used as a biofertilizer. For this, cellulose seems to be a promising option promoting P. aculeatum growth and P solubilization also in non-sterilized soil.


Subject(s)
Soil , Talaromyces , Cellulose , Sewage , Soil Microbiology , Sterilization
3.
Sci Total Environ ; 752: 141877, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32890833

ABSTRACT

Spatial heterogeneity of soil properties plays a major role in regulating ecosystem structure and functioning. In general, soil resources accumulate beneath woody plant-covered patches more than in the open interspace, making them function as fertility islands. Whilst wildfire is a common disturbance, little information is available on the role of particular plant species in maintaining soil fertility underneath in areas that are subjected to recurrent fires. This is an important issue given that land abandonment, together with a warmer and drier climate, is increasing fire danger in regions such as the Mediterranean. We determined whether increasing fire frequency, producing changes from a Quercus ilex L., woodland to a shrubland, modifies the effect of woody plant canopy on soil fertility. Additionally, the effect of fire history on species-specific leaf and litter nutrient concentration was assessed. Areas affected by none, one, two or three fires were selected. Within each area, soil fertility was measured underneath Cistus ladanifer L., Retama sphaerocarpa L., Phillyrea angustifolia L. and Quercus ilex canopies and in open interspace. Unburned soils located underneath P. angustifolia and Q. ilex canopies were significantly more fertile than in open interspaces. The microsite effect on soil fertility was fire frequency dependent. As fire frequency increased, the plant canopy microsite effect decreased for soil organic matter (SOM), cation exchange capacity (CEC), total C, P, Ca, K and Mg, labile phosphate, arylsulfatase and acid phosphatase activities. Total N, ammonium, nitrate and ß-glucosidase activity decreased with increasing fire frequency, but their spatial variability was maintained along all fire frequency scenarios. Fire frequency decreased foliar N concentration but increased P concentration in some species, leading to a decrease in their N:P ratio. Our findings suggest that soil fertility heterogeneity will be reduced with increasing fire frequency. This could compromise the recovery of soil and ecosystem functioning.

4.
New Phytol ; 229(3): 1268-1277, 2021 02.
Article in English | MEDLINE | ID: mdl-32929739

ABSTRACT

Phosphate-solubilising microorganisms (PSM) are often reported to have positive effects on crop productivity through enhanced phosphorus (P) nutrition. Our aim was to evaluate the validity of this concept. Most studies that report 'positive effects' of PSM on plant growth have been conducted under controlled conditions, whereas field experiments more frequently fail to demonstrate a positive response. Many studies have indicated that the mechanisms seen in vitro do not translate into improved crop P nutrition in complex soil-plant systems. Furthermore, associated mechanisms are often not rigorously assessed. We suggest that PSM do not mobilise sufficient P to change the crops' nutritional environment under field conditions. The current concept, in which PSM solubilise P 'for the plant' should thus be revised. Although PSM have the capacity to solubilise P to meet their own needs, it is the turnover of the microbial biomass that subsequently provides P to plants over a longer time. Therefore, the existing concept of PSM function is unlikely to deliver a reliable strategy for increasing crop P nutrition. A further mechanistic understanding is needed to determine how P mobilisation by PSM as a component of the whole soil community can be manipulated to become more effective for plant P nutrition.


Subject(s)
Phosphates , Soil , Agriculture , Crops, Agricultural , Phosphorus , Soil Microbiology
5.
Waste Manag ; 58: 135-143, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27614561

ABSTRACT

Fruits of Palo Santo (Bursera graveolens) are used for essential oil extraction. The extraction process is very efficient, because up to 3% of the fresh fruits can be transformed into essential oil; however, a considerable amount of waste is concurrently produced (>97% of the fresh biomass). Recent developments in Ecuadorian policies to foster environmentally friendly agroforestry and industrial practices have led to widespread interest in reusing the waste. This study evaluated the application of four vermicomposts (VMs), which are produced from the waste of the Palo Santo fruit distillation in combination with other raw materials (kitchen leftovers, pig manure, goat manure, and King Grass), for agrochemical use and for carbon (C) and nitrogen (N) decomposition in two soils with different textures. The results showed that the vermicompost mixtures (VMM) were valuable for agricultural utilisation, because total N (min. 2.63%) was relatively high and the C/N ratio (max. 13.3), as well as the lignin (max. 3.8%) and polyphenol (max. 1.6%) contents were low. In addition, N availability increased for both soil types after the application of the VMM. In contrast, N became immobile during decomposition if the VM of the pure waste was added. This likely occurred because of the relatively low total N (1.16%) content and high C/N ratio (35.0). However, the comparatively low C decomposition of this VM type makes its application highly recommendable as a strategy to increase the levels of organic matter and C, as well as for soil reclamation. Overall, these results suggest that the residues of the Palo Santo essential oil extraction are a potential source for vermicompost production and sustainable agriculture.


Subject(s)
Bursera/chemistry , Oils, Volatile , Soil , Waste Management/methods , Waste Products , Agriculture/methods , Animals , Carbon/analysis , Carbon/metabolism , Chemical Fractionation , Manure , Nitrogen/analysis , Nitrogen/metabolism , Oligochaeta , Waste Products/analysis
6.
J Environ Manage ; 181: 710-720, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27566935

ABSTRACT

Global livestock production is increasing rapidly, leading to larger amounts of manure and environmental impacts. Technologies that can be applied to treat manure in order to decrease certain environmental impacts include separation and acidification. In this study, a life cycle assessment was used to investigate the environmental effects of slurry acidification and separation, and whether there were synergetic environmental benefits to combining these technologies. Furthermore, an analysis was undertaken into the effect of implementing regulations restricting the P application rate to soils on the environmental impacts of the technologies. The impact categories analysed were climate change, terrestrial, marine and freshwater eutrophication, fossil resource depletion and toxicity potential. In-house slurry acidification appeared to be the most beneficial scenario under both N and P regulations. Slurry separation led to a lower freshwater eutrophication potential than the other scenarios in which N regulations alone were in force, while these environmental benefits disappeared after implementation of stricter P regulations. With N regulations alone, there was a synergetic positive effect of combining in-house acidification and separation on marine eutrophication potential compared to these technologies individually. The model was sensitive to the chosen ammonia emission coefficients and to the choice of inclusion of indirect nitrous oxide emissions, since scenarios changed ranking for certain impact categories.


Subject(s)
Environmental Pollution/prevention & control , Fertilizers , Manure , Soil/chemistry , Waste Management/methods , Ammonia/analysis , Animals , Models, Theoretical , Nitrous Oxide/analysis , Sus scrofa , Swine
7.
Environ Sci Pollut Res Int ; 23(14): 14383-92, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27068895

ABSTRACT

Previous studies found that thermally dried biosolids contained more mineralisable organic nitrogen (N) than the raw or anaerobically digested (AD) biosolids they were derived from. However, the effect of thermal drying temperature on biosolid N availability is not well understood. This will be of importance for the value of the biosolids when used to fertilise crops. We sourced AD biosolids from a Danish waste water treatment plant (WWTP) and dried it in the laboratory at 70, 130, 190 or 250 °C to >95 % dry matter content. Also, we sourced biosolids from the WWTP dried using its in-house thermal drying process (input temperature 95 °C, thermal fluid circuit temperature 200 °C, 95 % dry matter content). The drying process reduced the ammonium content of the biosolids and reduced it further at higher drying temperatures. These findings were attributed to ammonia volatilisation. The percentage of mineralisable organic N fraction (min-N) in the biosolids, and nitrous oxide (N2O) and carbon dioxide (CO2) production were analysed 120 days after addition to soil. When incubated at soil field capacity (pF 2), none of the dried biosolids had a greater min-N than the AD biosolids (46.4 %). Min-N was lowest in biosolids dried at higher temperatures (e.g. 19.3 % at 250 °C vs 35.4 % at 70 °C). Considering only the dried biosolids, min-N was greater in WWTP-dried biosolids (50.5 %) than all of the laboratory-dried biosolids with the exception of the 70 °C-dried biosolids. Biosolid carbon mineralisation (CO2 release) and N2O production was also the lowest in treatments of the highest drying temperature, suggesting that this material was more recalcitrant. Overall, thermal drying temperature had a significant influence on N availability from the AD biosolids, but drying did not improve the N availability of these biosolids in any case.


Subject(s)
Carbon Dioxide/chemistry , Nitrogen , Nitrous Oxide/chemistry , Soil/chemistry , Wastewater , Desiccation , Hot Temperature , Nitrogen/analysis , Nitrogen/chemistry , Wastewater/analysis , Wastewater/chemistry , Water Purification
8.
Bioresour Technol ; 102(21): 9997-10005, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21890354

ABSTRACT

Composting is a realistic option for disposal of olive mill pomace (OMP) by making it suitable as a soil amendment for organic farming. The chemical and physical characteristics and contribution of particle-size fractions to total nutrients and carbon mineralization of seven commercial composts of OMP (COMP) were investigated. Higher proportions of manure, co-composted with OMP, reduced the organic matter (OM), total carbon and C:N ratio of the product, but increased the content of nutrients and fine particles. The fine particles had higher nutrient contents, but less OM and carbon and, unlike larger particles, did not exhibit any phytotoxicity. Less than 1.5% of added carbon was mineralized in whole compost, but a lower rate was found with larger particles. Separation of COMP by particle size fractionation and application as a soil conditioner is recommended for better optimization of COMP with the <1mm fraction providing the higher quality compost.


Subject(s)
Carbon/chemistry , Chemical Fractionation/methods , Industrial Waste/analysis , Minerals/chemistry , Olea/chemistry , Particle Size , Carbon/analysis , Cellulose/analysis , Lepidium sativum/growth & development , Lignin/analysis , Nitrogen/analysis , Phosphorus/analysis , Polyphenols/analysis , Principal Component Analysis , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...