Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Biotechnol Rep (Amst) ; 13: 42-48, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28352562

ABSTRACT

Rare arginine codons AGA and AGG affect the heterologous expression of proteins in Eschericha coli. The tRNAs necessary for protein synthesis are scarce in E. coli strain BL21(DE3) pLysS and plentiful in strain BL21(DE3) CodonPlus -RIL. We evaluated in both bacterial strains the effect of these rare codons on the expression of triosephosphate isomerases from 7 different species, whose sequences had different dispositions of rare arginine codons. The ratio of expressed protein (CP/Bl21) correlated with the number of rare codons. Our study shows that the number, position and particularities of the combination of rare Arg codons in the natural non-optimized sequences of the triosephosphate isomerases influence the synthesis of heterologous proteins in E. coli and could have implications in the selection of better sequences for engineering enzymes for novel or manipulated metabolic pathways or for the expression levels of non enzymatic proteins..

2.
ChemMedChem ; 11(12): 1328-38, 2016 06 20.
Article in English | MEDLINE | ID: mdl-26492824

ABSTRACT

Triosephosphate isomerase (TIM) is an essential Trypanosoma cruzi enzyme and one of the few validated drug targets for Chagas disease. The known inhibitors of this enzyme behave poorly or have low activity in the parasite. In this work, we used symmetrical diarylideneketones derived from structures with trypanosomicidal activity. We obtained an enzymatic inhibitor with an IC50 value of 86 nm without inhibition effects on the mammalian enzyme. These molecules also affected cruzipain, another essential proteolytic enzyme of the parasite. This dual activity is important to avoid resistance problems. The compounds were studied in vitro against the epimastigote form of the parasite, and nonspecific toxicity to mammalian cells was also evaluated. As a proof of concept, three of the best derivatives were also assayed in vivo. Some of these derivatives showed higher in vitro trypanosomicidal activity than the reference drugs and were effective in protecting infected mice. In addition, these molecules could be obtained by a simple and economic green synthetic route, which is an important feature in the research and development of future drugs for neglected diseases.


Subject(s)
Antiprotozoal Agents/pharmacology , Cysteine Endopeptidases/metabolism , Enzyme Inhibitors/pharmacology , Protozoan Proteins/antagonists & inhibitors , Triose-Phosphate Isomerase/antagonists & inhibitors , Trypanosoma cruzi/drug effects , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/therapeutic use , Binding Sites , Chagas Disease/drug therapy , Cysteine Endopeptidases/chemistry , Disease Models, Animal , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Ketones/chemistry , Ketones/pharmacology , Ketones/therapeutic use , Mice , Molecular Docking Simulation , Protein Structure, Tertiary , Protozoan Proteins/metabolism , Structure-Activity Relationship , Triose-Phosphate Isomerase/metabolism , Trypanosoma cruzi/growth & development
3.
Molecules ; 20(8): 14595-610, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26274947

ABSTRACT

The current pharmacological Chagas disease treatments, using Nifurtimox or Benznidazole, show limited therapeutic results and are associated with potential side effects, like mutagenicity. Using random screening we have identified new chemotypes that were able to inhibit relevant targets of the Trypanosoma cruzi. We found 3H-[1,2]dithioles with the ability to inhibit Trypanosoma cruzi triosephosphate isomerase (TcTIM). Herein, we studied the structural modifications of this chemotype to analyze the influence of volume, lipophilicity and electronic properties in the anti-T. cruzi activity. Their selectivity to parasites vs. mammalian cells was also examined. To get insights into a possible mechanism of action, the inhibition of the enzymatic activity of TcTIM and cruzipain, using the isolated enzymes, and the inhibition of membrane sterol biosynthesis and excreted metabolites, using the whole parasite, were achieved. We found that this structural framework is interesting for the generation of innovative drugs for the treatment of Chagas disease.


Subject(s)
Toluene/analogs & derivatives , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cell Line , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Macrophages/drug effects , Mice , Sterols/antagonists & inhibitors , Sterols/biosynthesis , Toluene/chemical synthesis , Toluene/chemistry , Toluene/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanosoma cruzi/metabolism
4.
Eur J Med Chem ; 100: 246-56, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26094151

ABSTRACT

The neglected disease American trypanosomiasis is one of the major health problems in Latin America. Triosephosphate isomerase from Trypanosoma cruzi (TcTIM), the etiologic agent of this disease, has been proposed as a druggable target. Some bis-benzothiazoles have been described as irreversible inhibitors of this enzyme. On the other hand, new bioactive furane-containing thiazoles have been described as excellent in vivo anti-T. cruzi agents. This encouraged us to design and develop new bis-thiazoles with potential use as drugs for American trypanosomiasis. The bis-thiazol 5, 3,3'-allyl-2,2'-bis[3-(2-furyl)-2-propenylidenehydrazono]-2,2',3,3'-tetrahydro-4,4'-bisthiazole, showed the best in vitro anti-T. cruzi profile with a higher selectivity index than the reference drugs Nifurtimox and Benznidazole against amastigote form of the parasite. This derivative displayed marginal activity against TcTIM however the bis-thiazol 14, 3-allyl-2-[3-(2-furyl)-2-propenylidenehydrazono]-3'-phenyl-2'-(3-phenyl-2-propenylidenehydrazono]-2,2',3,3'-tetrahydro-4,4'-bisthiazole, was an excellent inhibitor of the enzyme of the parasite. The absence of both in vitro mutagenic and in vivo toxicity effects, together with the activity of bis-thiazol 5in vivo, suggests that this compound is a promising anti-T. cruzi agent surpassing the "hit-to-lead" stage in the drug development process.


Subject(s)
Enzyme Inhibitors/pharmacology , Thiazoles/pharmacology , Triose-Phosphate Isomerase/antagonists & inhibitors , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/enzymology , Animals , Cell Line , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Hydrophobic and Hydrophilic Interactions , Macrophages , Mice , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry , Triose-Phosphate Isomerase/metabolism , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
5.
J Enzyme Inhib Med Chem ; 29(2): 198-204, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23406473

ABSTRACT

CONTEXT: Triosephosphate isomerase (TIM) is a ubiquitous enzyme that has been targeted for the discovery of new small molecular weight compounds used against Trypanosoma cruzi, the causative agent of Chagas disease. We have identified phenazine and 1,2,6-thiadiazine chemotypes as novel inhibitors of TIM from T. cruzi (TcTIM). OBJECTIVE: Study the mechanism of TcTIM inhibition by a phenazine derivative and by a 1,2,6-thiadiazine derivative. METHODS: We performed biochemical and theoretical molecular docking studies to characterize the interaction of the derivatives with wild-type and mutant TcTIM. RESULTS AND CONCLUSION: At low micromolar concentrations, the compounds induce highly selective irreversible inactivation of parasitic TIM. The molecular docking simulations indicate that the phenazine derivative likely interferes with the association of the two monomers of the dimeric enzyme by locating at the dimer interface, while 1,2,6-thiadiazine could act as an inhibitor binding to a region surrounding Cys-118.


Subject(s)
Antiprotozoal Agents/pharmacology , Enzyme Inhibitors/pharmacology , Phenazines/pharmacology , Thiadiazines/pharmacology , Triose-Phosphate Isomerase/antagonists & inhibitors , Trypanosoma cruzi/drug effects , Antiprotozoal Agents/chemistry , Binding, Competitive , Chagas Disease/drug therapy , Electrophoresis, Polyacrylamide Gel , Enzyme Inhibitors/chemistry , Escherichia coli/genetics , Models, Biological , Molecular Docking Simulation , Molecular Structure , Parasitic Sensitivity Tests , Phenazines/chemistry , Protein Binding , Protein Folding , Protein Multimerization , Thiadiazines/chemistry , Triose-Phosphate Isomerase/chemistry , Triose-Phosphate Isomerase/genetics , Trypanosoma cruzi/enzymology
6.
PLoS One ; 6(6): e21035, 2011.
Article in English | MEDLINE | ID: mdl-21738601

ABSTRACT

We previously observed that human homodimeric triosephosphate isomerase (HsTIM) expressed in Escherichia coli and purified to apparent homogeneity exhibits two significantly different thermal transitions. A detailed exploration of the phenomenon showed that the preparations contain two proteins; one has the expected theoretical mass, while the mass of the other is 28 Da lower. The two proteins were separated by size exclusion chromatography in 3 M urea. Both proteins correspond to HsTIM as shown by Tandem Mass Spectrometry (LC/ESI-MS/MS). The two proteins were present in nearly equimolar amounts under certain growth conditions. They were catalytically active, but differed in molecular mass, thermostability, susceptibility to urea and proteinase K. An analysis of the nucleotides in the human TIM gene revealed the presence of six codons that are not commonly used in E. coli. We examined if they were related to the formation of the two proteins. We found that expression of the enzyme in a strain that contains extra copies of genes that encode for tRNAs that frequently limit translation of heterologous proteins (Arg, Ile, Leu), as well as silent mutations of two consecutive rare Arg codons (positions 98 and 99), led to the exclusive production of the more stable protein. Further analysis by LC/ESI-MS/MS showed that the 28 Da mass difference is due to the substitution of a Lys for an Arg residue at position 99. Overall, our work shows that two proteins with different biochemical and biophysical properties that coexist in the same cell environment are translated from the same nucleotide sequence frame.


Subject(s)
Arginine/genetics , Escherichia coli/metabolism , Lysine/genetics , Triose-Phosphate Isomerase/chemistry , Triose-Phosphate Isomerase/metabolism , Arginine/chemistry , Calorimetry, Differential Scanning , Chromatography, Gel , Chromatography, Liquid , Computational Biology , Escherichia coli/genetics , Humans , Lysine/chemistry , Polymorphism, Genetic/genetics , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Triose-Phosphate Isomerase/genetics
7.
PLoS One ; 6(4): e18791, 2011 Apr 18.
Article in English | MEDLINE | ID: mdl-21533154

ABSTRACT

For a better comprehension of the structure-function relationship in proteins it is necessary to identify the amino acids that are relevant for measurable protein functions. Because of the numerous contacts that amino acids establish within proteins and the cooperative nature of their interactions, it is difficult to achieve this goal. Thus, the study of protein-ligand interactions is usually focused on local environmental structural differences. Here, using a pair of triosephosphate isomerase enzymes with extremely high homology from two different organisms, we demonstrate that the control of a seventy-fold difference in reactivity of the interface cysteine is located in several amino acids from two structurally unrelated regions that do not contact the cysteine sensitive to the sulfhydryl reagent methylmethane sulfonate, nor the residues in its immediate vicinity. The change in reactivity is due to an increase in the apparent pKa of the interface cysteine produced by the mutated residues. Our work, which involved grafting systematically portions of one protein into the other protein, revealed unsuspected and multisite long-range interactions that modulate the properties of the interface cysteines and has general implications for future studies on protein structure-function relationships.


Subject(s)
Amino Acids/chemistry , Triose-Phosphate Isomerase/metabolism , Trypanosoma/enzymology , Amino Acid Sequence , Animals , Base Sequence , Biocatalysis , DNA Primers , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Polymerase Chain Reaction , Sequence Homology, Amino Acid , Triose-Phosphate Isomerase/chemistry , Triose-Phosphate Isomerase/genetics
8.
Insect Biochem Mol Biol ; 41(6): 400-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21396445

ABSTRACT

Triosephosphate isomerase (TIM) is an enzyme with a role in glycolysis and gluconeogenesis by catalyzing the interconversion between glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. This enzyme has been used as a target in endoparasite drug development. In this work we cloned, expressed, purified and studied kinetic and structural characteristics of TIM from tick embryos, Rhipicephalus (Boophilus) microplus (BmTIM). The Km and Vmax of the recombinant BmTIM with glyceraldehyde 3-phosphate as substrate, were 0.47 mM and 6031 µmol min⁻¹ mg protein⁻¹, respectively. The resolution of the diffracted crystal was estimated to be 2.4 Å and the overall data showed that BmTIM is similar to other reported dimeric TIMs. However, we found that, in comparison to other TIMs, BmTIM has the highest content of cysteine residues (nine cysteine residues per monomer). Only two cysteines could make disulfide bonds in monomers of BmTIM. Furthermore, BmTIM was highly sensitive to the action of the thiol reagents dithionitrobenzoic acid and methyl methane thiosulfonate, suggesting that there are five cysteines exposed in each dimer and that these residues could be employed in the development of species-specific inhibitors.


Subject(s)
Embryo, Nonmammalian/enzymology , Recombinant Proteins/metabolism , Rhipicephalus/enzymology , Triose-Phosphate Isomerase/metabolism , Zygote/enzymology , Amino Acid Sequence , Animals , Catalysis , Cloning, Molecular , Crystallography, X-Ray , Cysteine/chemistry , Cysteine/metabolism , Dihydroxyacetone Phosphate/metabolism , Dimerization , Escherichia coli , Glyceraldehyde 3-Phosphate/metabolism , Humans , Kinetics , Models, Molecular , Molecular Sequence Data , Protein Conformation/drug effects , Recombinant Proteins/genetics , Rhipicephalus/embryology , Sequence Alignment , Sulfhydryl Reagents/pharmacology , Triose-Phosphate Isomerase/antagonists & inhibitors , Triose-Phosphate Isomerase/genetics , Triose-Phosphate Isomerase/isolation & purification
9.
Eur J Med Chem ; 45(12): 5767-72, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20889239

ABSTRACT

Triosephosphate isomerase from Trypanosoma cruzi (TcTIM), an enzyme in the glycolytic pathway that exhibits high catalytic rates of glyceraldehyde-3-phosphate- and dihydroxyacetone-phosphate-isomerization only in its dimeric form, was screened against an in-house chemical library containing nearly 230 compounds belonging to different chemotypes. After secondary screening, twenty-six compounds from eight different chemotypes were identified as screening positives. Four compounds displayed selectivity for TcTIM over TIM from Homo sapiens and, concomitantly, in vitro activity against T. cruzi.


Subject(s)
Enzyme Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Triose-Phosphate Isomerase/antagonists & inhibitors , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Dimerization , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Models, Molecular , Molecular Structure , Parasitic Sensitivity Tests , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Stereoisomerism , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanosoma cruzi/enzymology
10.
Article in English | MEDLINE | ID: mdl-18678934

ABSTRACT

The PyrR transcriptional regulator is widely distributed in bacteria. This RNA-binding protein is involved in the control of genes involved in pyrimidine biosynthesis, in which uridyl and guanyl nucleotides function as effectors. Here, the crystallization and preliminary X-ray diffraction analysis of two crystal forms of Bacillus halodurans PyrR are reported. One of the forms belongs to the monoclinic space group P2(1) with unit-cell parameters a = 59.7, b = 87.4, c = 72.1 A, beta = 104.4 degrees , while the other form belongs to the orthorhombic space group P22(1)2(1) with unit-cell parameters a = 72.7, b = 95.9, c = 177.1 A. Preliminary X-ray diffraction data analysis and molecular-replacement solution revealed the presence of four and six monomers per asymmetric unit; a crystallographic tetramer is formed in both forms.


Subject(s)
Bacillus/chemistry , Bacterial Proteins/chemistry , Pentosyltransferases/chemistry , Repressor Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Base Sequence , Chromatography, Gel , Cloning, Molecular , Crystallography, X-Ray , DNA Primers , Electrophoresis, Polyacrylamide Gel , Models, Molecular , Pentosyltransferases/genetics , Pentosyltransferases/isolation & purification , Protein Conformation , Repressor Proteins/genetics , Repressor Proteins/isolation & purification
11.
Biochemistry ; 47(11): 3499-506, 2008 Mar 18.
Article in English | MEDLINE | ID: mdl-18298085

ABSTRACT

Cysteine 14 is an interface residue that is fundamental for the catalysis and stability of homodimeric triosephosphate isomerase from Trypanosoma brucei (TbTIM). Its side chain is surrounded by a deep pocket of 11 residues that are part of loop 3 of the adjacent monomer. Mutation of this residue to serine (producing single mutant C14S) yields a wild-type-like enzyme that is resistant to the action of sulfhydryl reagents methylmethane thiosulfonate (MMTS) and 5,5-dithiobis(2-nitrobenzoate) (DTNB). This mutant enzyme was a starting point for probing by cysteine scanning the role of four residues of loop 3 in the catalysis and stability of the enzyme. Considering that the conservative substitution of either serine or alanine with cysteine would minimally alter the structure and properties of the environment of the residue in position 14, we made double mutants C14S/A69C, C14S/S71C, C14S/A73C, and C14S/S79C. Three of these double mutants were similar in their kinetic parameters to wild-type TbTIM and the single mutant C14S, but double mutant C14S/A73C showed a greatly reduced k cat. All enzymes had similar CD spectra, but all mutants had thermal stabilities lower than that of wild-type TbTIM. Intrinsic fluorescence was also similar for all enzymes, but the double mutants bound up to 50 times more 1-anilino-8-naphthalene sulfonate (ANS) and were susceptible to digestion with subtilisin. The double mutants were also susceptible to inactivation by sulfhydryl reagents. Double mutant C14S/S79C exhibited the highest sensitivity to MMTS and DTNB, bound a significant amount of ANS, and had the highest sensitivity to subtilisin. Thus, the residues at positions 73 and 79 are critical for the catalysis and stability of TbTIM, respectively.


Subject(s)
Amino Acid Substitution , Triose-Phosphate Isomerase/chemistry , Triose-Phosphate Isomerase/metabolism , Trypanosoma brucei brucei/enzymology , Amino Acid Substitution/genetics , Animals , Circular Dichroism , Cysteine/genetics , Enzyme Stability/genetics , Hot Temperature , Kinetics , Mutation , Protein Structure, Tertiary/genetics , Serine/genetics , Solvents , Spectrometry, Fluorescence , Surface Properties , Triose-Phosphate Isomerase/genetics , Trypanosoma brucei brucei/genetics
12.
PLoS Negl Trop Dis ; 1(1): e1, 2007 Oct 31.
Article in English | MEDLINE | ID: mdl-17989778

ABSTRACT

BACKGROUND: Chagas disease affects around 18 million people in the American continent. Unfortunately, there is no satisfactory treatment for the disease. The drugs currently used are not specific and exert serious toxic effects. Thus, there is an urgent need for drugs that are effective. Looking for molecules to eliminate the parasite, we have targeted a central enzyme of the glycolytic pathway: triosephosphate isomerase (TIM). The homodimeric enzyme is catalytically active only as a dimer. Because there are significant differences in the interface of the enzymes from the parasite and humans, we searched for small molecules that specifically disrupt contact between the two subunits of the enzyme from Trypanosoma cruzi but not those of TIM from Homo sapiens (HTIM), and tested if they kill the parasite. METHODOLOGY/PRINCIPAL FINDINGS: Dithiodianiline (DTDA) at nanomolar concentrations completely inactivates recombinant TIM of T. cruzi (TcTIM). It also inactivated HTIM, but at concentrations around 400 times higher. DTDA was also tested on four TcTIM mutants with each of its four cysteines replaced with either valine or alanine. The sensitivity of the mutants to DTDA was markedly similar to that of the wild type. The crystal structure of the TcTIM soaked in DTDA at 2.15 A resolution, and the data on the mutants showed that inactivation resulted from alterations of the dimer interface. DTDA also prevented the growth of Escherichia coli cells transformed with TcTIM, had no effect on normal E. coli, and also killed T. cruzi epimastigotes in culture. CONCLUSIONS/SIGNIFICANCE: By targeting on the dimer interface of oligomeric enzymes from parasites, it is possible to discover small molecules that selectively thwart the life of the parasite. Also, the conformational changes that DTDA induces in the dimer interface of the trypanosomal enzyme are unique and identify a region of the interface that could be targeted for drug discovery.


Subject(s)
Triose-Phosphate Isomerase/metabolism , Trypanosoma cruzi/drug effects , Aniline Compounds/pharmacology , Animals , Chagas Disease/drug therapy , Chagas Disease/epidemiology , Cysteine/analysis , Dimerization , Escherichia coli/enzymology , Escherichia coli/genetics , Humans , Incidence , Kinetics , Models, Molecular , Protein Conformation , Recombinant Proteins/drug effects , Sequence Deletion , Triose-Phosphate Isomerase/chemistry , Triose-Phosphate Isomerase/genetics , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/growth & development , X-Ray Diffraction
13.
Proteins ; 67(1): 75-83, 2007 Apr 01.
Article in English | MEDLINE | ID: mdl-17221869

ABSTRACT

Homodimeric triosephosphate isomerase (TIM) from Trypanosoma cruzi (TcTIM) and T. brucei (TbTIM) are markedly similar in amino acid sequence and three-dimensional structure. In their dimer interfaces, each monomer has a Cys15 that is surrounded by loop3 of the adjoining subunit. Perturbation of Cys15 by methylmethane thiosulfonate (MMTS) induces abolition of catalysis and structural changes. In the two TIMs, the structural arrangements of their Cys15 are almost identical. Nevertheless, the susceptibility of TcTIM to MMTS is nearly 100-fold higher than in TbTIM. To ascertain the extent to which the characteristics of the interface Cys depend on the dynamics of its own monomer or on those of the adjacent monomer, we studied MMTS action on mutants of TcTIM that had the interface residues of TbTIM, and hybrids that have only one interfacial Cys15 (C15ATcTIM-wild type TbTIM). We found that the solvent exposure of the interfacial Cys depends predominantly on the characteristics of the adjoining monomer. The maximal inhibition of activity induced by perturbation of the sole interface Cys in the C15ATcTIM-TbTIM hybrid is around 60%. Hybrids formed with C15ATcTIM monomers and catalytically inert TbTIM monomers (E168DTbTIM) were also studied. Their activity drops by nearly 50% when the only interfacial Cys is perturbed. These results in conjunction with those on C15ATcTIM-wild type TbTIM hybrid indicate that about half of the activity of each monomer depends on the integrity of each of the two Cys15-loop3 portions of the interface. This could be another reason of why TIM is an obligatory dimer.


Subject(s)
Cysteine/chemistry , Methyl Methanesulfonate/analogs & derivatives , Triose-Phosphate Isomerase/chemistry , Trypanosoma brucei brucei/enzymology , Trypanosoma cruzi/enzymology , Amino Acid Sequence , Animals , Dimerization , Kinetics , Methyl Methanesulfonate/chemistry , Methyl Methanesulfonate/pharmacology , Mutagenesis, Site-Directed , Protein Interaction Mapping/methods , Protein Structure, Quaternary , Triose-Phosphate Isomerase/antagonists & inhibitors , Triose-Phosphate Isomerase/genetics , Triose-Phosphate Isomerase/metabolism
14.
Arch Biochem Biophys ; 439(1): 129-37, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-15950171

ABSTRACT

The effect of guanidinium hydrochloride (GdnHCl) on multisite and unisite ATPase activity by F0F1 of submitochondrial particles from bovine hearts was studied. In particles without control by the inhibitor protein, 50 mM GdnHCl inhibited multisite hydrolysis by about 85%; full inhibition required around 500 mM. In the range of 500-650 mM, GdnHCl enhanced the rate of unisite catalysis by promoting product release; it also increased the rate of hydrolysis of ATP bound to the catalytic site without GdnHCl. GdnHCl diminished the affinity of the enzyme for aurovertin. The effects of GdnHCl were irreversible. The results suggest that disruption of intersubunit contacts in F0F1 abolishes multisite hydrolysis and stimulates of unisite hydrolysis. Particles under control by the inhibitor protein were insensitive to concentrations of GdnHCl that induce the aforementioned alterations of F0F1 free of inhibitor protein, indicating that the protein stabilizes the global structure of particulate F1.


Subject(s)
Adenosine Triphosphate/chemistry , Guanidine/chemistry , Mitochondria, Heart/enzymology , Proteins/chemistry , Proton-Translocating ATPases/chemistry , Submitochondrial Particles/enzymology , Animals , Aurovertins/chemistry , Cattle , Enzyme Activation , Hydrolysis , Protein Denaturation , Uncoupling Agents/chemistry , ATPase Inhibitory Protein
15.
Biochem Biophys Res Commun ; 330(3): 844-9, 2005 May 13.
Article in English | MEDLINE | ID: mdl-15809073

ABSTRACT

The ATPase inhibitor protein (IP) of mitochondria was detected in the plasma membrane of living endothelial cells by flow cytometry, competition assays, and confocal microscopy of cells exposed to IP antibodies. The plasma membranes of endothelial cells also possess beta-subunits of the mitochondrial ATPase. Plasma membranes have the capacity to bind exogenous IP. TNF-alpha decreases the level of beta-subunits and increases the amount of IP, indicating that the ratio of IP to beta-subunit exhibits significant variations. Therefore, it is probable that the function of IP in the plasma membrane of endothelial cells is not limited to regulation of catalysis.


Subject(s)
Cell Membrane/metabolism , Endothelial Cells/cytology , Endothelial Cells/metabolism , Mitochondrial Proton-Translocating ATPases/antagonists & inhibitors , Proteins/metabolism , Antibodies/immunology , Cell Membrane/drug effects , Cells, Cultured , Humans , Microscopy, Confocal , Mitochondrial Proton-Translocating ATPases/chemistry , Mitochondrial Proton-Translocating ATPases/metabolism , Protein Binding/drug effects , Protein Subunits/metabolism , Proteins/analysis , Proteins/immunology , Solubility , Tumor Necrosis Factor-alpha/pharmacology , Umbilical Veins/cytology , ATPase Inhibitory Protein
16.
Biochem Biophys Res Commun ; 328(4): 1083-90, 2005 Mar 25.
Article in English | MEDLINE | ID: mdl-15707988

ABSTRACT

The non-enzymatic deamidation of asparaginyl residues is a major source of spontaneous damage of several proteins under physiological conditions. In many cases, deamidation and isoaspartyl formation alters the biological activity or stability of the native polypeptide. Rates of deamidation of particular residues depend on many factors including protein structure and solvent exposure. Here, we investigated the spontaneous deamidation of the two NADP-glutamate dehydrogenase isoenzymes from Saccharomyces cerevisiae, which have different kinetic properties and are differentially expressed in this yeast. Our results show that Asn54, present in Gdh3p but missing in the GDH1-encoded homologue, is readily deamidated in vitro under alkaline conditions. Relative to the native enzyme, deamidated Gdh3p shows reduced protein stability. The different deamidation rates of the two isoenzymes could explain to some extent, the relative in vivo instability of the allosteric Gdh3p enzyme, compared to that of Gdh1p. It is thus possible that spontaneous asparaginyl modification could play a role in the metabolic regulation of ammonium assimilation and glutamate biosynthesis.


Subject(s)
Amides/chemistry , Asparagine/chemistry , Glutamate Dehydrogenase/chemistry , Models, Molecular , Saccharomyces cerevisiae/enzymology , Amides/analysis , Amides/classification , Asparagine/analysis , Asparagine/classification , Computer Simulation , Enzyme Activation , Enzyme Stability , Glutamate Dehydrogenase/analysis , Glutamate Dehydrogenase/classification , Isoenzymes/analysis , Isoenzymes/chemistry , Isoenzymes/classification , Protein Denaturation , Structure-Activity Relationship
17.
J Biol Chem ; 279(38): 39846-55, 2004 Sep 17.
Article in English | MEDLINE | ID: mdl-15247300

ABSTRACT

Brain hexokinase is associated with the outer membrane of mitochondria, and its activity has been implicated in the regulation of ATP synthesis and apoptosis. Reactive oxygen species (ROS) are by-products of the electron transport chain in mitochondria. Here we show that the ADP produced by hexokinase activity in rat brain mitochondria (mt-hexokinase) controls both membrane potential (Deltapsi(m)) and ROS generation. Exposing control mitochondria to glucose increased the rate of oxygen consumption and reduced the rate of hydrogen peroxide generation. Mitochondrial associated hexokinase activity also regulated Deltapsi(m), because glucose stabilized low Deltapsi(m) values in state 3. Interestingly, the addition of glucose 6-phosphate significantly reduced the time of state 3 persistence, leading to an increase in the Deltapsi(m) and in H(2)O(2) generation. The glucose analogue 2-deoxyglucose completely impaired H(2)O(2) formation in state 3-state 4 transition. In sharp contrast, the mt-hexokinase-depleted mitochondria were, in all the above mentioned experiments, insensitive to glucose addition, indicating that the mt-hexokinase activity is pivotal in the homeostasis of the physiological functions of mitochondria. When mt-hexokinase-depleted mitochondria were incubated with exogenous yeast hexokinase, which is not able to bind to mitochondria, the rate of H(2)O(2) generation reached levels similar to those exhibited by control mitochondria only when an excess of 10-fold more enzyme activity was supplemented. Hyperglycemia induced in embryonic rat brain cortical neurons increased ROS production due to a rise in the intracellular glucose 6-phosphate levels, which were decreased by the inclusion of 2-deoxyglucose, N-acetyl cysteine, or carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Taken together, the results presented here indicate for the first time that mt-hexokinase activity performed a key role as a preventive antioxidant against oxidative stress, reducing mitochondrial ROS generation through an ADP-recycling mechanism.


Subject(s)
Antioxidants/metabolism , Hexokinase/metabolism , Mitochondria/enzymology , Neurons/enzymology , Animals , Cells, Cultured , Cerebral Cortex/cytology , Glucose/analogs & derivatives , Glucose-6-Phosphate/metabolism , Hydrogen Peroxide/metabolism , Hyperglycemia/metabolism , Male , Neurons/cytology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
18.
J Bioenerg Biomembr ; 36(6): 503-13, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15692729

ABSTRACT

The F1-inhibitor protein complex (F1-IP) was purified from heart submitochondrial particles. Size exclusion chromatography of the endogenous complex showed that it contains dimers (D) and monomers (M) of F1-IP. Further chromatographic analysis showed that D and M interconvert. At high protein concentrations, the interconversion reaction is shifted toward the D species. The release of the inhibiting action of IP is faster at low than at high protein concentrations. During activation of F1, the M species accumulates through a process that is faster than the release of IP from F1. These findings indicate that the activation of F1-IP involves the transformation of D into M, which subsequently loses IP. The spectroscopic characteristics of D, M, and free F1 show that the binding of IP and dimerization modifies the fluorescence intensity of tyrosine residues and that of the single tryptophan of F1 which is far from the IP binding site.


Subject(s)
Mitochondria, Heart/enzymology , Proteins/chemistry , Proteins/metabolism , Animals , Cattle , Chromatography, Gel , Dimerization , Enzyme Activation/physiology , Fluorescence , Protein Conformation , ATPase Inhibitory Protein
19.
Biochemistry ; 42(11): 3311-8, 2003 Mar 25.
Article in English | MEDLINE | ID: mdl-12641463

ABSTRACT

Homodimeric triosephosphate isomerases from Trypanosoma cruzi (TcTIM) and Trypanosoma brucei (TbTIM) have markedly similar catalytic properties and 3-D structures; their overall amino acid sequence identity is 68% and 85% in their interface residues. Nonetheless, active dimer formation from guanidinium chloride unfolded monomers is faster and more efficient in TcTIM than in TbTIM. The enzymes thus provide a unique opportunity for exploring the factors that control the formation of active dimers. The kinetics of reactivation at different protein concentrations showed that the process involved three reactions: monomer folding, association of folded monomers, and a transition from inactive to active dimers. The rate constants of the reactions indicated that, at relatively low protein concentrations, the rate-limiting step of reactivation was the association reaction; at high protein concentrations the transition of inactive to active dimers was rate limiting. The rates of the latter two reactions were higher in TcTIM than in TbTIM. Studies with a mutant of TcTIM that had the interface residues of TbTIM showed that the association rate constant was similar to that of TbTIM. However, the rate of the transition from inactive to active dimers was close to that of TcTIM; thus, this transition depends on the noninterfacial portion of the enzymes. When unfolded monomers of TcTIM and TbTIM were allowed to reactivate together, TcTIM, the hybrid, and TbTIM were formed in a proportion of 1:0.9:0.2. This distribution suggests that, in the hybrid, the characteristics of the TcTIM monomers influence the properties of TbTIM monomers.


Subject(s)
Triose-Phosphate Isomerase/metabolism , Animals , Base Sequence , Circular Dichroism , DNA Primers , Dimerization , Enzyme Activation , Kinetics , Mutagenesis , Protein Denaturation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrometry, Fluorescence , Triose-Phosphate Isomerase/chemistry , Trypanosoma brucei brucei/enzymology , Trypanosoma cruzi/enzymology
20.
Proteins ; 48(3): 580-90, 2002 Aug 15.
Article in English | MEDLINE | ID: mdl-12112681

ABSTRACT

The susceptibility to subtilisin of homodimeric triosephosphate isomerase from Trypanosoma brucei (TbTIM) and Trypanosoma cruzi (TcTIM) was studied. Their amino sequence and 3D structure are markedly similar. In 36 h of incubation at a molar ratio of 4 TIM per subtilisin, TcTIM underwent extensive hydrolysis, loss of activity, and large structural alterations. Under the same conditions, only about 50% of the monomers of TbTIM were cleaved in two sites. The higher sensitivity of TcTIM to subtilisin is probably due to a higher intrinsic flexibility. We isolated and characterized TbTIM that had been exposed to subtilisin. It exhibited the molecular mass of the dimer, albeit it was formed by one intact and one nicked monomer. Its k(cat) with glyceraldehyde 3-phosphate was half that of native TbTIM, with no change in K(m). The intrinsic fluorescence of nicked TbTIM was red-shifted by 5 nm. The association between subunits was not affected. The TbTIM data suggest that there are structural differences in the two monomers or that alterations of one subunit change the characteristics of the other subunit. In comparison to the action of subtilisin on TIMs from other species, the trypanosomal enzymes appear to be unique.


Subject(s)
Triose-Phosphate Isomerase/metabolism , Trypanosoma brucei brucei/enzymology , Trypanosoma cruzi/enzymology , Amino Acid Sequence , Animals , Electrophoresis , Enzyme Stability , Hydrolysis , Kinetics , Molecular Sequence Data , Molecular Weight , Sequence Alignment , Subtilisin/metabolism , Triose-Phosphate Isomerase/chemistry , Trypanosoma brucei brucei/pathogenicity , Trypanosoma cruzi/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL