Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Res ; 95(7): 1783-1790, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38360979

ABSTRACT

BACKGROUND: Neonatal rats can manifest post-stroke mood disorders (PSMD) following middle cerebral artery occlusion (MCAO). We investigated whether cannabidiol (CBD) neuroprotection, previously demonstrated in neonatal rats after MCAO, includes prevention of PSMD development. METHODS: Seven-day-old Wistar rats (P7) underwent MCAO and received either vehicle or 5 mg/kg CBD treatment. Brain damage was quantified by MRI, and neurobehavioral and histological (TUNEL) studies were performed at P14 and P37. PSMD were assessed using the tail suspension test, forced swimming test, and open field tests. The dopaminergic system was evaluated by quantifying dopaminergic neurons (TH+) in the Ventral Tegmental Area (VTA), measuring brain dopamine (DA) concentration and DA transporter expression, and assessing the expression and function D2 receptors (D2R) through [35S]GTPγS binding. Animals without MCAO served as controls. RESULTS: CBD reduced MCAO-induced brain damage and improved motor performance. At P14, MCAO induced depressive-like behavior, characterized by reduced TH+ cell population and DA levels, which CBD did not prevent. However, CBD ameliorated hyperactivity observed at P37, preventing increased DA concentration by restoring D2R function. CONCLUSIONS: These findings confirm the development of PSMD following MCAO in neonatal rats and highlight CBD as a neuroprotective agent capable of long-term functional normalization of the dopaminergic system post-MCAO. IMPACT: MCAO in neonatal rats led to post-stroke mood disorders consisting in a depression-like picture in the medium term evolving towards long-term hyperactivity, associated with an alteration of the dopaminergic system. The administration of CBD after MCAO did not prevent the development of depressive-like behavior, but reduced long-term hyperactivity, normalizing dopamine receptor function. These data point to the importance of considering the development of depression-like symptoms after neonatal stroke, a well-known complication after stroke in adults. Our work confirms the interest of CBD as a possible treatment for neonatal stroke.


Subject(s)
Animals, Newborn , Cannabidiol , Dopamine , Mood Disorders , Rats, Wistar , Stroke , Animals , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Rats , Stroke/drug therapy , Stroke/complications , Stroke/metabolism , Mood Disorders/drug therapy , Mood Disorders/etiology , Dopamine/metabolism , Neuroprotective Agents/pharmacology , Receptors, Dopamine D2/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Brain/drug effects , Brain/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Male , Disease Models, Animal , Behavior, Animal/drug effects , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism
2.
Int J Mol Sci ; 24(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36834637

ABSTRACT

Post-stroke mood disorders (PSMD) affect disease prognosis in adults. Adult rodent models underlie the importance of the dopamine (DA) system in PSMD pathophysiology. There are no studies on PSMD after neonatal stroke. We induced neonatal stroke in 7-day-old (P7) rats by temporal left middle cerebral artery occlusion (MCAO). Performance in the tail suspension test (TST) at P14 and the forced swimming test (FST) and open field test (OFT) at P37 were studied to assess PSMD. DA neuron density in the ventral tegmental area, brain DA concentration and DA transporter (DAT) expression as well as D2 receptor (D2R) expression and G-protein functional coupling were also studied. MCAO animals revealed depressive-like symptoms at P14 associated with decreased DA concentration and reduced DA neuron population and DAT expression. At P37, MCAO rats showed hyperactive behavior associated with increased DA concentration, normalization of DA neuron density and decreased DAT expression. MCAO did not modify D2R expression but reduced D2R functionality at P37. MCAO-induced depressive-like symptoms were reversed by the DA reuptake inhibitor GBR-12909. In conclusion, MCAO in newborn rats induced depressive-like symptoms and hyperactive behavior in the medium and long term, respectively, that were associated with alterations in the DA system.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Dopamine , Rats , Animals , Dopamine/metabolism , Animals, Newborn , Dopamine Plasma Membrane Transport Proteins/metabolism , Brain/metabolism , Receptors, Dopamine D2/metabolism , Dopamine Uptake Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL