Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
iScience ; 27(3): 109284, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38444608

ABSTRACT

Purinergic dysfunctions are associated with mania and depression pathogenesis. P2X7 receptor (P2X7R) mediates the IL-1ß maturation via NLRP3 inflammasome activation. We tested in a mouse model of the subchronic amphetamine (AMPH)-induced hyperactivity whether P2X7R inhibition alleviated mania-like behavior through IL-1ß. Treatment with JNJ-47965567, a P2X7R antagonist, abolished AMPH-induced hyperlocomotion in wild-type and IL-1α/ß-knockout male mice. The NLRP3 inhibitor MCC950 failed to reduce AMPH-induced locomotion in WT mice, whereas the IL-1 receptor antagonist anakinra slightly increased it. AMPH increased IL-10, TNF-α, and TBARS levels, but did not influence BDNF levels, serotonin, dopamine, and noradrenaline content in brain tissues in either genotypes. JNJ-47965567 and P2rx7-gene deficiency, but not IL-1α/ß-gene deficiency, attenuated AMPH-induced [3H]dopamine release from striatal slices. In wild-type and IL-1α/ß-knockout female mice, JNJ-47965567 was also effective in attenuating AMPH-induced hyperlocomotion. This study suggests that AMPH-induced hyperactivity is modulated by P2X7Rs, but not through IL-1ß.

2.
Front Pharmacol ; 14: 1241406, 2023.
Article in English | MEDLINE | ID: mdl-37908978

ABSTRACT

Background: As a member of the purinergic receptor family, divalent cation-regulated ionotropic P2X7 (P2rx7) plays a role in the pathophysiology of psychiatric disorders. This study aimed to investigate whether the effects of acute zinc administration and long-term zinc deprivation on depression-like behaviors in mice are mediated by P2X7 receptors. Methods: The antidepressant-like effect of elevated zinc level was studied using a single acute intraperitoneal injection in C57BL6/J wild-type and P2rx7 gene-deficient (P2rx7 -/-) young adult and elderly animals in the tail suspension test (TST) and the forced swim test (FST). In the long-term experiments, depression-like behavior caused by zinc deficiency was investigated with the continuous administration of zinc-reduced and control diets for 8 weeks, followed by the same behavioral tests. The actual change in zinc levels owing to the treatments was examined by assaying serum zinc levels. Changes in monoamine and brain-derived neurotrophic factor (BDNF) levels were measured from the hippocampus and prefrontal cortex brain areas by enzyme-linked immunosorbent assay and high-performance liquid chromatography, respectively. Results: A single acute zinc treatment increased the serum zinc level evoked antidepressant-like effect in both genotypes and age groups, except TST in elderly P2rx7 -/- animals, where no significant effect was detected. Likewise, the pro-depressant effect of zinc deprivation was observed in young adult mice in the FST and TST, which was alleviated in the case of the TST in the absence of functional P2X7 receptors. Among elderly mice, no pro-depressant effect was observed in P2rx7 -/- mice in either tests. Treatment and genotype changes in monoamine and BDNF levels were also detected in the hippocampi. Conclusion: Changes in zinc intake were associated with age-related changes in behavior in the TST and FST. The antidepressant-like effect of zinc is partially mediated by the P2X7 receptor.

3.
Brain Behav Immun ; 101: 318-332, 2022 03.
Article in English | MEDLINE | ID: mdl-35065198

ABSTRACT

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition caused by interactions of environmental and genetic factors. Recently we showed that activation of the purinergic P2X7 receptors is necessary and sufficient to convert maternal immune activation (MIA) to ASD-like features in male offspring mice. Our aim was to further substantiate these findings and identify downstream signaling pathways coupled to P2X7 upon MIA. Maternal treatment with the NLRP3 antagonist MCC950 and a neutralising IL-1ß antibody during pregnancy counteracted the development of autistic characteristics in offspring mice. We also explored time-dependent changes of a widespread cytokine and chemokine profile in maternal blood and fetal brain samples of poly(I:C)/saline-treated dams. MIA-induced increases in plasma IL-1ß, RANTES, MCP-1, and fetal brain IL-1ß, IL-2, IL-6, MCP-1 concentrations are regulated by the P2X7/NLRP3 pathway. Offspring treatment with the selective P2X7 receptor antagonist JNJ47965567 was effective in the prevention of autism-like behavior in mice using a repeated dosing protocol. Our results highlight that in addition to P2X7, NLRP3, as well as inflammatory cytokines, may also be potential biomarkers and therapeutic targets of social deficits and repetitive behaviors observed in autism spectrum disorder.


Subject(s)
Autistic Disorder , Prenatal Exposure Delayed Effects , Receptors, Purinergic P2X7 , Animals , Autistic Disorder/genetics , Behavior, Animal , Cytokines , Disease Models, Animal , Female , Male , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Phenotype , Pregnancy , Receptors, Purinergic P2X7/genetics
4.
Pharmacol Res ; 176: 106045, 2022 02.
Article in English | MEDLINE | ID: mdl-34968684

ABSTRACT

Parkinson's disease (PD) is a chronic, progressive neurodegenerative condition; characterized with the degeneration of the nigrostriatal dopaminergic pathway and neuroinflammation. During PD progression, microglia, the resident immune cells in the central nervous system (CNS) display altered activity, but their role in maintaining PD development has remained unclear to date. The purinergic P2Y12-receptor (P2Y12R), which is expressed on the microglia in the CNS has been shown to regulate microglial activity and responses; however, the function of the P2Y12R in PD is unknown. Here we show that MPTP-induced PD symptoms in mice are associated with marked neuroinflammatory changes and P2Y12R contribute to the activation of microglia and progression of the disease. Surprisingly, while pharmacological or genetic targeting of the P2Y12R augments acute mortality in MPTP-treated mice, these interventions protect against the neurodegenerative cell loss and the development of neuroinflammation in vivo. Pharmacological inhibition of receptors during disease development reverses the symptoms of PD and halts disease progression. We found that P2Y12R regulates ROCK and p38 MAPK activity and control cytokine production. Our principal finding is that the receptor has a dualistic role in PD: functional P2Y12Rs are essential to initiate a protective inflammatory response, since the lack of the receptor leads to reduced survival; however, at later stages of neurodegeneration, P2Y12Rs are apparently responsible for maintaining the activated state of microglia and stimulating pro-inflammatory cytokine response. Understanding protective and detrimental P2Y12R-mediated actions in the CNS may reveal novel approaches to control neuroinflammation and modify disease progression in PD.


Subject(s)
Parkinsonian Disorders/metabolism , Receptors, Purinergic P2Y12/metabolism , Animals , Brain/metabolism , Cell Line , Disease Models, Animal , Dopamine/metabolism , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Purinergic P2Y Receptor Antagonists/pharmacology , Receptors, Purinergic P2Y12/genetics , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism , rho-Associated Kinases/metabolism
5.
Br J Pharmacol ; 178(23): 4626-4645, 2021 12.
Article in English | MEDLINE | ID: mdl-34363208

ABSTRACT

BACKGROUND AND PURPOSE: P2Y12 receptors regulate different forms of pain and inflammation. In this study, we investigated the participation of P2Y12 receptors in an animal model of migraine. EXPERIMENTAL APPROACH: We tested the effect of the centrally administered selective P2Y12 antagonist PSB-0739 and P2Y12 receptor gene (P2ry12-/- ) deficiency in acute nitroglycerin-treated mice. Additionally, platelet depletion was used to investigate the role of platelet P2Y12 receptors during migraine-like pain. KEY RESULTS: Nitroglycerin induced sensory hypersensitivity of C57BL/6 wild-type (P2ry12+/+ ) mice accompanied by an increase in c-fos and CGRP expression in the upper cervical spinal cord (C1-C2) and trigeminal nucleus caudalis. Similar changes were also observed in P2Y12 gene-deficient (P2ry12-/- ) mice. Prophylactic intrathecal application of PSB-0739 reversed thermal hyperalgesia and head grooming time in wild-type mice but had no effect in P2ry12-/- mice. Furthermore, PSB-0739 was also effective when applied as a post-treatment. PSB-0739 administration suppressed the expression of c-fos in C1-C2 and trigeminal nucleus caudalis, and decreased the levels of dopamine and 5-hydroxytryptamine in C1-C2 in wild-type mice. Nitroglycerin treatment itself did not change adenosine diphosphate (ADP)-induced platelet activation measured by CD62P up-regulation in wild-type mice. Platelet depletion by anti-mouse CD41 antibody and clopidogrel attenuated nitroglycerin-induced thermal hypersensitivity and head grooming time in mice. CONCLUSION AND IMPLICATIONS: Our findings show that acute inhibition of P2Y12 receptors alleviates migraine-like pain in mice by modulating the expression of c-fos and that platelet P2Y12 receptors might contribute to this effect. Thus the blockade of P2Y12 receptors may have therapeutic potential against migraine.


Subject(s)
Migraine Disorders , Nitroglycerin , Animals , Disease Models, Animal , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Male , Mice , Mice, Inbred C57BL , Migraine Disorders/chemically induced , Migraine Disorders/drug therapy , Migraine Disorders/metabolism , Nitroglycerin/adverse effects , Receptors, Purinergic P2Y12/metabolism , Trigeminal Nuclei/metabolism
6.
Nat Commun ; 9(1): 3351, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30120221

ABSTRACT

The originally published version of this article contained an error in the name of the author Flóra Gölöncsér, which was incorrectly given as Flóra Göröncsér. This has now been corrected in both the PDF and HTML versions of the article.

7.
Nat Commun ; 9(1): 1354, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29636447

ABSTRACT

Two subclasses of acid-sensing ion channels (ASIC3) and of ATP-sensitive P2X receptors (P2X3Rs) show a partially overlapping expression in sensory neurons. Here we report that both recombinant and native receptors interact with each other in multiple ways. Current measurements with the patch-clamp technique prove that ASIC3 stimulation strongly inhibits the P2X3R current partly by a Ca2+-dependent mechanism. The proton-binding site is critical for this effect and the two receptor channels appear to switch their ionic permeabilities during activation. Co-immunoprecipation proves the close association of the two protein structures. BN-PAGE and SDS-PAGE analysis is also best reconciled with the view that ASIC3 and P2X3Rs form a multiprotein structure. Finally, in vivo measurements in rats reveal the summation of pH and purinergically induced pain. In conclusion, the receptor subunits do not appear to form a heteromeric channel, but tightly associate with each other to form a protein complex, mediating unidirectional inhibition.


Subject(s)
Acid Sensing Ion Channels/genetics , Calcium/metabolism , Ganglia, Spinal/metabolism , Hyperalgesia/genetics , Pain/genetics , Protons , Receptors, Purinergic P2X3/genetics , Acid Sensing Ion Channels/metabolism , Animals , Animals, Newborn , CHO Cells , Cricetulus , Ganglia, Spinal/cytology , Hydrogen-Ion Concentration , Hyperalgesia/metabolism , Hyperalgesia/pathology , Ion Channel Gating , Male , Oocytes/cytology , Oocytes/metabolism , Pain/metabolism , Pain/pathology , Patch-Clamp Techniques , Protein Binding , Protein Subunits/genetics , Protein Subunits/metabolism , Rats , Rats, Wistar , Receptors, Purinergic P2X3/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/pathology , Xenopus laevis
8.
Front Mol Neurosci ; 10: 325, 2017.
Article in English | MEDLINE | ID: mdl-29075178

ABSTRACT

Serotonergic and glutamatergic neurons of median raphe region (MRR) play a pivotal role in the modulation of affective and cognitive functions. These neurons synapse both onto themselves and remote cortical areas. P2X7 receptors (P2rx7) are ligand gated ion channels expressed by central presynaptic excitatory nerve terminals and involved in the regulation of neurotransmitter release. P2rx7s are implicated in various neuropsychiatric conditions such as schizophrenia and depression. Here we investigated whether 5-HT release released from the hippocampal terminals of MRR is subject to modulation by P2rx7s. To achieve this goal, an optogenetic approach was used to selectively activate subpopulation of serotonergic terminals derived from the MRR locally, and one of its target area, the hippocampus. Optogenetic activation of neurons in the MRR with 20 Hz was correlated with freezing and enhanced locomotor activity of freely moving mice and elevated extracellular levels of 5-HT, glutamate but not GABA in vivo. Similar optical stimulation (OS) significantly increased [3H]5-HT and [3H]glutamate release in acute MRR and hippocampal slices. We examined spatial and temporal patterns of [3H]5-HT release and the interaction between the serotonin and glutamate systems. Whilst [3H]5-HT release from MRR neurons was [Ca2+]o-dependent and sensitive to TTX, CNQX and DL-AP-5, release from hippocampal terminals was not affected by the latter drugs. Hippocampal [3H]5-HT released by electrical but not OS was subject to modulation by 5- HT1B/D receptors agonist sumatriptan (1 µM), whereas the selective 5-HT1A agonist buspirone (0.1 µM) was without effect. [3H]5-HT released by electrical and optical stimulation was decreased in mice genetically deficient in P2rx7s, and after perfusion with selective P2rx7 antagonists, JNJ-47965567 (0.1 µM), and AZ-10606120 (0.1 µM). Optical and electrical stimulation elevated the extracellular level of ATP. Our results demonstrate for the first time the modulation of 5-HT release from hippocampal MRR terminals by the endogenous activation of P2rx7s. P2rx7 mediated modulation of 5-HT release could contribute to various physiological and pathophysiological phenomena, related to hippocampal serotonergic transmission.

9.
PLoS One ; 12(7): e0181264, 2017.
Article in English | MEDLINE | ID: mdl-28708877

ABSTRACT

The median raphe region (MRR) is believed to control the fear circuitry indirectly, by influencing the encoding and retrieval of fear memories by amygdala, hippocampus and prefrontal cortex. Here we show that in addition to this established role, MRR stimulation may alone elicit the emergence of remote but not recent fear memories. We substituted electric shocks with optic stimulation of MRR in C57BL/6N male mice in an optogenetic conditioning paradigm and found that stimulations produced agitation, but not fear, during the conditioning trial. Contextual fear, reflected by freezing was not present the next day, but appeared after a 7 days incubation. The optogenetic silencing of MRR during electric shocks ameliorated conditioned fear also seven, but not one day after conditioning. The optogenetic stimulation patterns (50Hz theta burst and 20Hz) used in our tests elicited serotonin release in vitro and lead to activation primarily in the periaqueductal gray examined by c-Fos immunohistochemistry. Earlier studies demonstrated that fear can be induced acutely by stimulation of several subcortical centers, which, however, do not generate persistent fear memories. Here we show that the MRR also elicits fear, but this develops slowly over time, likely by plastic changes induced by the area and its connections. These findings assign a specific role to the MRR in fear learning. Particularly, we suggest that this area is responsible for the durable sensitization of fear circuits towards aversive contexts, and by this, it contributes to the persistence of fear memories. This suggests the existence a bottom-up control of fear circuits by the MRR, which complements the top-down control exerted by the medial prefrontal cortex.


Subject(s)
Brain/physiology , Animals , Behavior, Animal , Electroshock , Fear/physiology , Halorhodopsins/metabolism , Immunohistochemistry , Male , Memory/physiology , Mice , Mice, Inbred C57BL , Periaqueductal Gray/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Serotonin/metabolism , Video Recording
10.
Mol Neurodegener ; 11: 6, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26758813

ABSTRACT

BACKGROUND: Mitochondrial dysfunction, oxidative stress and their interplay are core pathological features of Parkinson's disease. In dopaminergic neurons, monoamines and their metabolites provide an additional source of reactive free radicals during their breakdown by monoamine oxidase or auto-oxidation. Moreover, mitochondrial dysfunction and oxidative stress have a supraadditive impact on the pathological, cytoplasmic accumulation of dopamine and its subsequent release. Here we report the effects of a novel series of potent and selective MAO-B inhibitory (hetero)arylalkenylpropargylamine compounds having protective properties against the supraadditive effect of mitochondrial dysfunction and oxidative stress. RESULTS: The (hetero)arylalkenylpropargylamines were tested in vitro, on acute rat striatal slices, pretreated with the complex I inhibitor rotenone and in vivo, using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced acute, subchronic, and chronic experimental models of Parkinson's disease in mice. The compounds exhibited consistent protective effects against i) in vitro oxidative stress induced pathological dopamine release and the formation of toxic dopamine quinone in the rat striatum and rescued tyrosine hydroxylase positive neurons in the substantia nigra after rotenone treatment; ii) in vivo MPTP-induced striatal dopamine depletion and motor dysfunction in mice using acute and subchronic, delayed application protocols. One compound (SZV558) was also examined and proved to be protective in a chronic mouse model of MPTP plus probenecid (MPTPp) administration, which induces a progressive loss of nigrostriatal dopaminergic neurons. CONCLUSIONS: Simultaneous inhibition of MAO-B and oxidative stress induced pathological dopamine release by the novel propargylamines is protective in animal models and seems a plausible strategy to combat Parkinson's disease.


Subject(s)
Corpus Striatum/metabolism , Dopaminergic Neurons/drug effects , Pargyline/analogs & derivatives , Parkinson Disease/metabolism , Propylamines/pharmacology , Substantia Nigra/drug effects , Animals , Corpus Striatum/drug effects , Disease Models, Animal , Dopamine/analogs & derivatives , Dopamine/metabolism , Male , Oxidative Stress/drug effects , Pargyline/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Rats, Wistar , Substantia Nigra/metabolism , Substantia Nigra/pathology
11.
Neuropharmacology ; 104: 94-104, 2016 05.
Article in English | MEDLINE | ID: mdl-26384652

ABSTRACT

The principle functions of neuroinflammation are to limit tissue damage and promote tissue repair in response to pathogens or injury. While neuroinflammation has utility, pathophysiological inflammatory responses, to some extent, underlie almost all neuropathology. Understanding the mechanisms that control the three stages of inflammation (initiation, propagation and resolution) is therefore of critical importance for developing treatments for diseases of the central nervous system. The purinergic signaling system, involving adenosine, ATP and other purines, plus a host of P1 and P2 receptor subtypes, controls inflammatory responses in complex ways. Activation of the inflammasome, leading to release of pro-inflammatory cytokines, activation and migration of microglia and altered astroglial function are key regulators of the neuroinflammatory response. Here, we review the role of P1 and P2 receptors in mediating these processes and examine their contribution to disorders of the nervous system. Firstly, we give an overview of the concept of neuroinflammation. We then discuss the contribution of P2X, P2Y and P1 receptors to the underlying processes, including a discussion of cross-talk between these different pathways. Finally, we give an overview of the current understanding of purinergic contributions to neuroinflammation in the context of specific disorders of the central nervous system, with special emphasis on neuropsychiatric disorders, characterized by chronic low grade inflammation or maternal inflammation. An understanding of the important purinergic contribution to neuroinflammation underlying neuropathology is likely to be a necessary step towards the development of effective interventions. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.


Subject(s)
Encephalitis/metabolism , Receptors, Purinergic P1/metabolism , Receptors, Purinergic P2/metabolism , Adenosine/metabolism , Adenosine Triphosphate/metabolism , Animals , Encephalitis/congenital , Humans , Inflammasomes/metabolism , Inflammation Mediators , Receptor Cross-Talk , Signal Transduction
12.
J Med Chem ; 58(3): 1400-19, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25627172

ABSTRACT

To develop novel neuroprotective agents, a library of novel arylalkenylpropargylamines was synthesized and tested for inhibitory activities against monoamine oxidases. From this, a number of highly potent and selective monoamine oxidase B inhibitors were identified. Selected compounds were also tested for neuroprotection in in vitro studies with PC-12 cells treated with 6-OHDA and rotenone, respectively. It was observed that some of the compounds tested yielded a marked increase in survival in PC-12 cells treated with the neurotoxins. This indicates that these propargylamines are able to confer protection against the effects of the toxins and may also be considered as novel disease-modifying anti-Parkinsonian agents, which are much needed for the therapy of Parkinson's disease.


Subject(s)
Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase/metabolism , Neuroprotective Agents/pharmacology , Pargyline/analogs & derivatives , Parkinson Disease/drug therapy , Propylamines/pharmacology , Animals , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Mice , Molecular Structure , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , PC12 Cells , Pargyline/chemical synthesis , Pargyline/chemistry , Pargyline/pharmacology , Parkinson Disease/enzymology , Parkinson Disease/metabolism , Propylamines/chemical synthesis , Propylamines/chemistry , Rats , Structure-Activity Relationship
13.
J Headache Pain ; 15: 24, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24885962

ABSTRACT

BACKGROUND: Purine receptors participate in peripheral and central sensitization and are associated with migraine headache. We investigated the role of P2X7 receptor (P2X7) in a nitroglycerin (NTG)-induced mouse model of migraine. METHODS: Intraperitoneal NTG injection (15 mg/kg) triggered thermal hyperalgesia in the hindpaws of wild-type C57BL/6J mice, followed by the induction of c-fos in upper cervical spinal cord and trigeminal nucleus caudalis. The effect of genetic deletion of P2X7 and the selective P2X7 antagonist Brilliant Blue G (BBG) were examined on hyperalgesia and c-fos induction. RESULTS: NTG decreased the paw withdrawal threshold in both wild-type and P2X7 knockout mice. Nevertheless, subacute BBG treatment (50 mg/kg/day i.p.) completely prevented the effect of NTG in wild-type, but not in knockout mice. Whereas P2X7 deficiency differentially affected the expression of c-fos, the average number of fos-immuno-reactive neurons in trigeminal nucleus caudalis, but not in upper cervical spinal cord was lower in BBG-treated wild-type mice after NTG treatment. CONCLUSIONS: Our results show that P2X7 receptors might participate in the pathogenesis of migraine, although upregulation of other P2X receptors probably compensate for the loss of its action in knockout mice. The data also suggest the therapeutic potential of P2X7 antagonists for the treatment of migraine.


Subject(s)
Disease Models, Animal , Gene Deletion , Migraine Disorders/genetics , Purinergic P2X Receptor Antagonists/therapeutic use , Receptors, Purinergic P2X7/deficiency , Receptors, Purinergic P2X7/genetics , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Migraine Disorders/drug therapy , Migraine Disorders/metabolism , Purinergic P2X Receptor Antagonists/pharmacology , Random Allocation
14.
Neurobiol Dis ; 70: 162-78, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24971933

ABSTRACT

In this study the role of P2Y12 receptors (P2Y12R) was explored in rodent models of inflammatory and neuropathic pain and in acute thermal nociception. In correlation with their activity to block the recombinant human P2Y12R, the majority of P2Y12R antagonists alleviated mechanical hyperalgesia dose-dependently, following intraplantar CFA injection, and after partial ligation of the sciatic nerve in rats. They also caused an increase in thermal nociceptive threshold in the hot plate test. Among the six P2Y12R antagonists evaluated in the pain studies, the selective P2Y12 receptor antagonist PSB-0739 was most potent upon intrathecal application. P2Y12R mRNA and IL-1ß protein were time-dependently overexpressed in the rat hind paw and lumbar spinal cord following intraplantar CFA injection. This was accompanied by the upregulation of TNF-α, IL-6 and IL-10 in the hind paw. PSB-0739 (0.3mg/kg i.t.) attenuated CFA-induced expression of cytokines in the hind paw and of IL-1ß in the spinal cord. Subdiaphragmatic vagotomy and the α7 nicotinic acetylcholine receptor antagonist MLA occluded the effect of PSB-0739 (i.t.) on pain behavior and peripheral cytokine induction. Denervation of sympathetic nerves by 6-OHDA pretreatment did not affect the action of PSB-0739. PSB-0739, in an analgesic dose, did not influence motor coordination and platelet aggregation. Genetic deletion of the P2Y12R in mice reproduced the effect of P2Y12R antagonists on mechanical hyperalgesia in inflammatory and neuropathic pain models, on acute thermal nociception and on the induction of spinal IL-1ß. Here we report the robust involvement of the P2Y12R in inflammatory pain. The anti-hyperalgesic effect of P2Y12R antagonism could be mediated by the inhibition of both central and peripheral cytokine production and involves α7-receptor mediated efferent pathways.


Subject(s)
Cytokines/metabolism , Pain/drug therapy , Pain/physiopathology , Receptors, Purinergic P2Y12/metabolism , Analgesics/pharmacology , Animals , CHO Cells , Cell Line, Tumor , Chimera , Cricetulus , Cyclic AMP/metabolism , Disease Models, Animal , Humans , Hyperalgesia/drug therapy , Hyperalgesia/physiopathology , Male , Mice, Inbred C57BL , Mice, Knockout , Nociception/drug effects , Nociception/physiology , Rats, Wistar , Receptors, Purinergic P2Y12/genetics
15.
PLoS One ; 8(6): e66547, 2013.
Article in English | MEDLINE | ID: mdl-23805233

ABSTRACT

Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [(3)H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [(3)H]5-HT and an elevated number of [(3)H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus.


Subject(s)
Anhedonia , Dentate Gyrus/metabolism , Gene Deletion , Glutamic Acid/metabolism , Neurogenesis , Receptors, Purinergic P2X7/deficiency , Serotonin/metabolism , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Dentate Gyrus/pathology , Dentate Gyrus/physiopathology , Lipopolysaccharides/toxicity , Mice , Mice, Knockout
16.
Int J Neuropsychopharmacol ; 16(1): 213-33, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22243662

ABSTRACT

The purpose of this study was to explore how genetic deletion and pharmacological antagonism of the P2X7 receptor (P2rx7) alter mood-related behaviour, gene expression and stress reactivity in the brain. The forced swim test (FST), tail suspension test (TST) and amphetamine-induced hyperlocomotion (AH) tests were used in wild-type (P2rx7(+/+)) and P2rx7-deficient (P2rx7(-/-)) mice. Biogenic amine levels were analysed in the amygdala and striatum, adrenocorticotropic hormone (ACTH) and corticosterone levels were measured in the plasma and pituitary after restraint stress. Chimeric mice were generated by bone marrow transplantation. A whole genome microarray analysis with real-time polymerase chain reaction validation was performed on the amygdala. In the absence of P2rx7s decreased behavioural despair in the FST, reduced immobility in the TST and attenuated amphetamine-induced hyperactivity were detected. Basal norepinephrine levels were elevated in the amygdala, whereas stress-induced ACTH and corticosterone responses were alleviated in P2rx7(-/-) mice. Sub-acute treatment with the selective P2rx7 antagonist, Brilliant Blue G, reproduced the effect of genetic deletion in the TST and AH test in P2rx7(+/+) but not P2rx7(-/-) mice. No change in behavioural phenotype was observed in chimeras lacking the P2rx7 in their haematopoietic compartment. Whole genome microarray analysis indicated a widespread up- and down-regulation of genes crucial for synaptic function and neuroplasticity by genetic deletion. Here, we present evidence that the absence of P2rx7s on non-haematopoietic cells leads to a mood-stabilizing phenotype in several behavioural models and suggest a therapeutic potential of P2rx7 antagonists for the treatment of mood disorders.


Subject(s)
Affect/physiology , Amygdala/metabolism , Depression/genetics , Gene Expression Regulation , Receptors, Purinergic P2X7/deficiency , Stress, Psychological/genetics , Animals , Depression/metabolism , Depression/psychology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Receptors, Purinergic P2X7/genetics , Stress, Psychological/metabolism , Stress, Psychological/psychology , Swimming/psychology
17.
Neuropsychopharmacol Hung ; 14(4): 231-8, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23269209

ABSTRACT

The purinergic signaling system consists of transporters, enzymes and receptors responsible for the synthesis, release, action and extracellular inactivation of adenosine 5'-triphosphate (ATP) and its extracellular breakdown product adenosine. The actions of ATP are mediated ionotropic P2X and metabotropic P2Y receptor subfamilies, whilst the actions of adenosine are mediated by P1 adenosine receptors. Purinergic signaling pathways are widely expressed in the central nervous system (CNS) and participate in its normal and pathological functions. Among P2X receptors, the P2X7 receptor (P2rx7) has received considerable interest in both basic and clinical neuropsychiatric research because of its profound effects in animal CNS pathology and its potential involvement as a susceptibility gene in mood disorders. Although genetic findings were not always consistently replicated, several studies demonstrated that single nucleotide polymorphisms (SNPs) in the human P2X7 gene (P2RX7) show significant association with major depressive disorder and bipolar disorder. Animal studies revealed that the genetic knock-down or pharmacological antagonism leads to reduced depressive-like behavior, attenuated response in mania-model and alterations in stress reactivity. A potential mechanism of P2rx7 activation on mood related behavior is increased glutamate release, activation of extrasynaptic NMDA receptors and subsequent enduring changes in neuroplasticity. In addition, dysregulation of monoaminergic transmission and HPA axis reactivity could also contribute to the observed changes in behavior. Besides P2rx7, the inhibition of adenosine A1 and A2A receptors also mediate antidepressant-like effects in animal experiments. In conclusion, despite contradictions between existing data, these findings point to the therapeutic potential of the purinergic signaling system in mood disorders.


Subject(s)
Depressive Disorder/metabolism , Receptors, Purinergic P2X7/metabolism , Signal Transduction , Adenosine A1 Receptor Antagonists/therapeutic use , Adenosine A2 Receptor Antagonists/therapeutic use , Animals , Bipolar Disorder/metabolism , Depressive Disorder/drug therapy , Depressive Disorder, Major/metabolism , Humans , Mood Disorders/metabolism , Polymorphism, Single Nucleotide , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A2A/metabolism , Receptors, Purinergic/metabolism , Receptors, Purinergic P2X7/genetics
18.
Mol Neurodegener ; 6: 28, 2011 May 04.
Article in English | MEDLINE | ID: mdl-21542899

ABSTRACT

BACKGROUND: Previous studies indicate a role of P2X7 receptors in processes that lead to neuronal death. The main objective of our study was to examine whether genetic deletion or pharmacological blockade of P2X7 receptors influenced dopaminergic cell death in various models of Parkinson's disease (PD). RESULTS: mRNA encoding P2X7 and P2X4 receptors was up-regulated after treatment of PC12 cells with 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP). P2X7 antagonists protected against MPTP and rotenone induced toxicity in the LDH assay, but failed to protect after rotenone treatment in the MTT assay in PC12 cells and in primary midbrain culture. In vivo MPTP and in vitro rotenone pretreatments increased the mRNA expression of P2X7 receptors in the striatum and substantia nigra of wild-type mice. Basal mRNA expression of P2X4 receptors was higher in P2X7 knockout mice and was further up-regulated by MPTP treatment. Genetic deletion or pharmacological inhibition of P2X7 receptors did not change survival rate or depletion of striatal endogenous dopamine (DA) content after in vivo MPTP or in vitro rotenone treatment. However, depletion of norepinephrine was significant after MPTP treatment only in P2X7 knockout mice. The basal ATP content was higher in the substantia nigra of wild-type mice, but the ADP level was lower. Rotenone treatment elicited a similar reduction in ATP content in the substantia nigra of both genotypes, whereas reduction of ATP was more pronounced after rotenone treatment in striatal slices of P2X7 deficient mice. Although the endogenous amino acid content remained unchanged, the level of the endocannabinoid, 2-AG, was elevated by rotenone in the striatum of wild-type mice, an effect that was absent in mice deficient in P2X7 receptors. CONCLUSIONS: We conclude that P2X7 receptor deficiency or inhibition does not support the survival of dopaminergic neurons in an in vivo or in vitro models of PD.

19.
Plant Signal Behav ; 6(6): 777-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21502819

ABSTRACT

Extended research has been carried out to clarify the ecological role of plant secondary metabolites (SMs). Although their primary ecological function is self-defence, bioactive compounds have long been used in alternative medicine or in biological control of pests. Several members of the family Labiatae are known to have strong antimicrobial capacity. For testing and quantifying antibacterial activity, most often standard microbial protocols are used, assessing inhibitory activity on a selected strain. In this study the applicability of a microbial ecotoxtest was evaluated to quantify the aggregate bactericide capacity of Labiatae species, based on the bioluminescence inhibition of the bacterium Vibrio fischeri. Striking differences were found amongst herbs, reaching even 10-fold toxicity. Glechoma hederacea L. proved to be the most toxic, with the EC50 of 0.4073 g dried plant/l. LC50 values generated by the standard bioassay seem to be a good indicator of the bactericide property of herbs. Traditional use of the selected herbs shows a good correlation with bioactivity expressed as bioluminescence inhibition, leading to the conclusion that the Vibrio fischeri bioassay can be a good indicator of the overall antibacterial capacity of herbs, at least on a screening level.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ecotoxicology/methods , Plants, Medicinal/chemistry , Toxicity Tests/methods , Aliivibrio fischeri/drug effects , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...