Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 267
Filter
Add more filters










Publication year range
1.
Anal Chim Acta ; 1312: 342749, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38834263

ABSTRACT

Carbon monoxide (CO) is an innate signaling molecule that can regulate immune responses and interact with crucial elements of the circadian clock. Moreover, pharmacologically, CO has been substantiated for its therapeutic advantages in animal models of diverse pathological conditions. Given that an excessive level of CO can be toxic, it is imperative to quantify the necessary amount for therapeutic use accurately. However, estimating gaseous CO is notably challenging. Therefore, novel techniques are essential to quantify CO in therapeutic applications and overcome this obstacle precisely. The classical Myoglobin (Mb) assay technique has been extensively used to determine the amount of CO-release from CO-releasing molecules (CORMs) within therapeutic contexts. Nevertheless, specific challenges arise when applying the Mb assay to evaluate CORMs featuring innovative molecular architectures. Here, we report a fluorinated photo-CORM (CORM-FBS) for the photo-induced CO-release. We employed the 19F NMR spectroscopy approach to monitor the release of CO as well as quantitative evaluation of CO release. This new 19F NMR approach opens immense opportunities for researchers to develop reliable techniques for identifying molecular structures, quantitative studies of drug metabolism, and monitoring the reaction process.


Subject(s)
Carbon Monoxide , Light , Myoglobin , Carbon Monoxide/analysis , Myoglobin/chemistry , Magnetic Resonance Spectroscopy/methods , Fluorine/chemistry , Animals , Photochemical Processes
2.
Dalton Trans ; 53(12): 5711-5720, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38450524

ABSTRACT

The reactions of dimesitylphosphane oxide Mes2P(O)H with Lawessons reagent and dimesitylphoshane with selenium yield Mes2P(E)H with E = S (1a) and E = Se (1b), respectively, with moderate yields. Metalation of dimesitylphosphane sulfide 1a with n-butyllithium, sodium hydride or potassium hydride in THF allows the isolation of dinuclear dimesityl-thiophosphinites of the type [(thf)2A-S-PMes2]2 [A = Li (4), Na (5), K (2a)] with central four-membered A2S2 rings. The weaker base THP leads to the very similar aggregate [(thp)2K-S-PMes2]2 (3a) as has also been observed for the homologous potassium dimesityl-selenophosphinites of the type [(L)2K-Se-PMes2]2 [L = thf (2b), thp (3b)]. Addition of 18-crown-6 ether leads to deaggregation and expectedly to formation of mononuclear [(18C6)K-S-PMes2] (6). Moderate yields have been obtained due to dismutation reactions that yield the corresponding phosphinates AE2PMes2 and phosphanides APMes2, a degradation process which has been observed earlier also for Li-O-PMes2. This side reaction hampers the application of these thio- and selenophosphinites as catalysts in the addition of phosphane sulfides and selenides across alkynes.

3.
Dalton Trans ; 53(11): 4922-4929, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38410991

ABSTRACT

The interplay of two proximate gallium centres equips the bimetallic complex CyL2Ga2 (1, CyL2 = 1,2-trans-Cy[NC(Me)C(H)C(Me)N(Dip)]2, Dip = 2,6-i-Pr2C6H3) with increased Lewis basicity and higher reducing power compared to the monometallic gallanediyl LGa (2, L = HC[MeCN(Dip)]2) as evidenced by cross-over experiments. Quantum chemical calculations were employed to support the experimental findings.

4.
Eur J Med Chem ; 264: 116023, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38071794

ABSTRACT

Nitrobenzothiazinones (BTZs) are potent active substances against Mycobacterium tuberculosis with currently two investigational drugs in clinical development for the treatment of tuberculosis. BTZs are the first examples for which a metabolic pathway towards transient hydride Meisenheimer complexes (HMC) has been shown in mammals, including humans. In this study, lead optimization efforts on BTZs are guided by the systematic evaluation of the HMC formation propensity combined with multiparameter assessment. For this purpose, a novel cell-based assay was specifically developed and fully implemented, and a library of 5- and 7-substituted BTZs was prepared to study substituent effects on the HMC formation. The multiparameter optimization revealed 5-methylated BTZs as the most preferred scaffolds, demonstrating a reduced HMC formation propensity combined with potent activity and good microsomal stability in vitro. In vivo experiments showed good systemic exposure upon oral administration and efficacy in a murine M. tuberculosis infection model. This study reports a qualified in vitro HMC assay, which not only enabled the selection of next-generation BTZs with improved pharmacokinetic properties but also allowed forecasting their in vivo metabolism.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Animals , Mice , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Tuberculosis/drug therapy , Biotransformation , Microbial Sensitivity Tests , Mammals
5.
Molecules ; 28(22)2023 Nov 12.
Article in English | MEDLINE | ID: mdl-38005273

ABSTRACT

[PtCl2{Te(CH2)6}2] (1) was synthesized from the cyclic telluroether Te(CH2)6 and cis-[PtCl2(NCPh)2] in dichloromethane at room temperature under the exclusion of light. The crystal structure determination showed that in the solid state, 1 crystallizes as yellow plate-like crystals of the cis-isomer 1cis and the orange-red interwoven needles of 1trans. The crystals could be separated under the microscope. NMR experiments showed that upon dissolution of the crystals of 1cis in CDCl3, it isomerizes and forms a dynamic equilibrium with the trans-isomer 1trans that becomes the predominant species. Small amounts of cis-trans-[Pt3Cl6{Te(CH2)6}4] (2) and cis-trans-[Pt4Cl8{Te(CH2)6}4] (3) were also formed and structurally characterized. Both compounds show rare bridging telluroether ligands and two different platinum coordination environments, one exhibiting a cis-Cl/cis-Te(CH2)6 arrangement and the other a trans-Cl/trans-Te(CH2)6 arrangement. Complex 2 has an open structure with two terminal and two bridging telluroether ligands, whereas complex 3 has a cyclic structure with four Te(CH2)6 bridging ligands. The bonding and formation of the complexes have been discussed through the use of DFT calculations combined with QTAIM analysis. The recrystallization of the mixture of the 1:1 reaction from d6-DMSO afforded [PtCl2{S(O)(CD3)2}{Te(CH2)6}] (4) that could also be characterized both structurally and spectroscopically.

6.
Chemistry ; 29(65): e202302544, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37641815

ABSTRACT

The dinuclear bis(N-heterocyclic carbene) borane adduct 2 rapidly reacts with tritylium salts at room temperature but the outcome is strongly impacted by the respective counter-ion. Using tritylium tetrakis(perfluoro-tert-butoxy)aluminate affords - depending on the solvent - either the bis(boronium) ion 4 or the hydride-bridged dication 5. In case of tritylium hexafluorophosphate, however, H/F exchange occurs between boron and phosphorus yielding the dinuclear BF3 adduct 3 along with phosphorus dihydride trifluoride. H/F exchange also takes place when using the mononuclear N-heterocyclic carbene BH3 adduct 6 and hence provides a facile route to PH2 F3 , which is usually synthesized in more complex reaction sequences regularly involving toxic hydrogen fluoride. DFT calculations shed light on the H/F exchange between the borenium ion and the [PF6 ]- counter-ion and the computed mechanism features only small barriers in line with the experimental observations.

7.
Dalton Trans ; 52(28): 9787-9796, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37395577

ABSTRACT

Two new mononuclear cobalt(II) complexes with the general formula [Co(L1,2)2] (1 and 2) were synthesized using bidentate Schiff base ligands with NO donor set, namely, 2-(benzothiazole-2-ylimino)methyl-5-(diethylamino)phenol (HL1) and its methyl substituted derivative 2-(6-methylbenzothiazole-2-ylimino)methyl-5-(diethylamino)phenol (HL2). X-ray structure analysis reveals a distorted pseudotetrahedral coordination sphere at the cobalt(II) ion, that cannot be described by a simple twisting of the two ligand chelate planes with respect to each other, which would imply a rotation about the pseudo-S4 axis of the complex. Such a pseudo-rotation axis would approximately be colinear with the two vectors defined by the cobalt ion and the two centroids of the chelate ligands, where the angle κ between the two vectors would be 180° in an ideal pseudotetrahedral arrangement. For complexes 1 and 2, the observed distortion can be characterized by a significant bending at the cobalt ion with angles κ of 163.2° and 167.4°, respectively. Magnetic susceptibility and FD-FT THz-EPR measurements together with ab initio calculations reveal an easy-axis type of anisotropy for both complexes 1 and 2, with a spin-reversal barrier of 58.9 and 60.5 cm-1, respectively. For both compounds, frequency-dependent ac susceptibility measurements show an out-of-phase susceptibility under applied static fields of 40 and 100 mT, which can be analyzed in terms of Orbach and Raman processes within the observed temperature range.

8.
Dalton Trans ; 52(22): 7421-7428, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37130059

ABSTRACT

To overcome the limitations of high reaction temperatures and long reaction times of conventional synthesis routes towards [FeFe] hydrogenase (H2ase) mimicking complexes, we introduced a more efficient synthesis route in the presence of aprotic polar co-solvents such as N-methyl-2-pyrrolidone (NMP). Versatile (di)thiol or disulfide ligands as well as selenium and tellurium analogues were converted to their corresponding complexes. While both reaction times and temperatures were reduced significantly, yields could be increased. Intensive kinetic monitoring of the formation of two [FeFe] H2ase mimics via UV-vis spectroscopy was performed, revealing an increase of the rate constant by one order of magnitude compared to that obtained in the same reaction without NMP. IR spectroscopic examination of the formation of the 1,3-propandithiole analogue (2a) revealed the appearance of a side product, analyzed by IR and UV-vis spectroscopy and mass spectrometry, which was proposed to be a NMP monosubstituted triirondodecacarbonyl (Fe3(CO)11NMP) cluster. Reacting triirondodecacarbonyl (Fe3(CO)12) with NMP in the absence of any additional ligand yielded this species as well. Quantum chemical simulations of Fe3(CO)11NMP indicated structural rearrangements including the omission of bridging carbonyls (µ-CO). Similar observations were made on utilizing other aprotic polar co-solvents.

9.
Chem Commun (Camb) ; 59(49): 7627-7630, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37255016

ABSTRACT

A tetranuclear magnesium hydride complex based on the ß-oxo-δ-diiminate (BODDI) ligand was isolated. In the solid state, the complex features three bridging µ2-hydrides and one unprecedented four-coordinate hydride in a nearly square-planar coordination environment. In the solid state, two different coordination polymers are observed depending on whether the axial or equatorial oxygen lone pairs of 1,4-dioxane are engaged in bonding to magnesium.

10.
Chemistry ; 29(37): e202300641, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37052175

ABSTRACT

Lewis base catalyzed allylations of C-centered nucleophiles have been largely limited to the niche substrates with acidic C-H substituted for C-F bonds at the stabilized carbanionic carbon. Herein we report that the concept of latent pronucleophiles serves to overcome these limitations and allow for a variety of common stabilized C-nucleophiles, when they are introduced as the corresponding silylated compounds, to undergo enantioselective allylations using allylic fluorides. The reactions of silyl enol ethers afford the allylation products in good yields and with high degree of regio/stereoselectivity as well as diastereoselectivity when cyclic silyl enol ethers are used. Further examples of silylated stabilized carbon nucleophiles that undergo efficient allylation speak in favor of the general applicability of this concept to C-centered nucleophiles.

11.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 4): 264-266, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37057018

ABSTRACT

The title compound, [Fe(C5H5)(C21H24NO2)], which is produced by the oxidation of 1-(4-tert-butyl-phen-yl)-2-ethyl-3-ferrocenyl-pyrrole, crystallizes as a racemic mixture in the centrosymmetric space group P21/n. The central heterocyclic pyrrole ring system subtends dihedral angles of 13.7 (2)° with respect to the attached cyclo-penta-dienyl ring and of 43.6 (7)° with the major component of the disordered phenyl group bound to the N atom. The 4-tert-butyl-phenyl group, as well as the non-substituted Cp ring are disordered with s.o.f. values of 0.589 (16) and 0.411 (16), respectively. In the crystal, mol-ecules with the same absolute configuration are linked into infinite chains along the b-axis direction by O-H⋯O hydrogen bonds between the hy-droxy substituent and the carbonyl O atom of the adjacent mol-ecule.

12.
Commun Chem ; 6(1): 79, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37095327

ABSTRACT

Macrotermitinae termites have farmed fungi in the genus Termitomyces as a food source for millions of years. However, the biochemical mechanisms orchestrating this mutualistic relationship are largely unknown. To deduce fungal signals and ecological patterns that relate to the stability of this symbiosis, we explored the volatile organic compound (VOC) repertoire of Termitomyces from Macrotermes natalensis colonies. Results show that mushrooms emit a VOC pattern that differs from mycelium grown in fungal gardens and laboratory cultures. The abundance of sesquiterpenoids from mushrooms allowed targeted isolation of five drimane sesquiterpenes from plate cultivations. The total synthesis of one of these, drimenol, and related drimanes assisted in structural and comparative analysis of volatile organic compounds (VOCs) and antimicrobial activity testing. Enzyme candidates putatively involved in terpene biosynthesis were heterologously expressed and while these were not involved in the biosynthesis of the complete drimane skeleton, they catalyzed the formation of two structurally related monocyclic sesquiterpenes named nectrianolins.

13.
Chemistry ; 29(25): e202203262, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36811602

ABSTRACT

Cu(I) 4H-imidazolate complexes are rare examples of Cu(I) complexes with chelating anionic ligands and are potent photosensitizers with unique absorption and photoredox properties. In this contribution, five novel heteroleptic Cu(I) complexes with monodentate triphenylphosphine co-ligands are investigated. As a consequence of the anionic 4H-imidazolate ligand and in contrast to comparable complexes with neutral ligands, these complexes are more stable than their homoleptic bis(4H-imidazolato)Cu(I) congeners. Here, the ligand exchange reactivity was studied by 31 P-,19 F-, and variable temperature NMR and the ground state structural and electronic properties by X-ray diffraction, absorption spectroscopy, and cyclic voltammetry. The excited-state dynamics were investigated by femto- and nanosecond transient absorption spectroscopy. The observed differences, with respect to chelating bisphosphine bearing congeners, are often due to the increased geometric flexibility of the triphenylphosphines. These observations render the investigated complexes interesting candidates for photo(redox)reactions not accessible with chelating bisphosphine ligands.

14.
Inorg Chem ; 62(8): 3420-3430, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36796032

ABSTRACT

The trinuclear high-spin iron(III) complex [Fe3Cl3(saltagBr)(py)6]ClO4 {H5saltagBr = 1,2,3-tris[(5-bromo-salicylidene)amino]guanidine} was synthesized and characterized by several experimental and theoretical methods. The iron(III) complex exhibits molecular 3-fold symmetry imposed by the rigid ligand backbone and crystallizes in trigonal space group P3̅ with the complex cation lying on a crystallographic C3 axis. The high-spin states (S = 5/2) of the individual iron(III) ions were determined by Mößbauer spectroscopy and confirmed by CASSCF/CASPT2 ab initio calculations. Magnetic measurements show an antiferromagnetic exchange between the iron(III) ions leading to a geometrically spin-frustrated ground state. This was complemented by high-field magnetization experiments up to 60 T, which confirm the isotropic nature of the magnetic exchange and negligible single-ion anisotropy for the iron(III) ions. Muon-spin relaxation experiments were performed and further prove the isotropic nature of the coupled spin ground state and the presence of isolated paramagnetic molecular systems with negligible intermolecular interactions down to 20 mK. Broken-symmetry density functional theory calculations are consistent with the antiferromagnetic exchange between the iron(III) ions within the presented trinuclear high-spin iron(III) complex. Ab initio calculations further support the absence of appreciable magnetic anisotropy (D = 0.086, and E = 0.010 cm-1) and the absence of significant contributions from antisymmetric exchange, as the two Kramers doublets are virtually degenerate (ΔE = 0.005 cm-1). Therefore, this trinuclear high-spin iron(III) complex should be an ideal candidate for further investigations of spin-electric effects arising exclusively from the spin chirality of a geometrically frustrated S = 1/2 spin ground state of the molecular system.

15.
Chemistry ; 29(18): e202202694, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36598160

ABSTRACT

The reaction of the Ru(PPh3 )3 Cl2 with HL1-3 -OH (-OH stands for the oxime hydroxyl group; HL1 -OH=diacetylmonoxime-S-benzyldithiocarbazonate; HL2 -OH=diacetylmonoxime-S-(4-methyl)benzyldithiocarbazonate; and HL3 -OH=diacetylmonoxime-S-(4-chloro)benzyl-dithiocarbazonate) gives three new ruthenium complexes [RuII (L1-3 -H)(PPh3 )2 Cl] (1-3) (-H stands for imine hydrogen) coordinated with dithiocarbazate imine as the final products. All ruthenium(II) complexes (1-3) have been characterized by elemental (CHNS) analyses, IR, UV-vis, NMR (1 H, 13 C, and 31 P) spectroscopy, HR-ESI-MS spectrometry and also, the structure of 1-2 was further confirmed by single crystal X-ray crystallography. The solution/aqueous stability, hydrophobicity, DNA interactions, and cell viability studies of 1-3 against HeLa, HT-29, and NIH-3T3 cell lines were performed. Cell viability results suggested 3 being the most cytotoxic of the series with IC50 6.9±0.2 µM against HeLa cells. Further, an apoptotic mechanism of cell death was confirmed by cell cycle analysis and Annexin V-FITC/PI double staining techniques. In this regard, the live cell confocal microscopy results revealed that compounds primarily target the mitochondria against HeLa, and HT-29 cell lines. Moreover, these ruthenium complexes elevate the ROS level by inducing mitochondria targeting apoptotic cell death.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ruthenium , Humans , HeLa Cells , Ruthenium/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis , Imines , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Cell Line, Tumor
16.
Chemistry ; 29(14): e202202966, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36468847

ABSTRACT

The methanol solvomorph 1 ⋅ 2MeOH of the cobalt(II) complex [Co(LSal,2-Ph )2 ] (1) with the sterically demanding Schiff-base ligand 2-(([1,1'-biphenyl]-2-ylimino)methyl)phenol (HLSal,2-Ph ) shows the thus far largest dihedral twist distortion between the two chelate planes compared to an ideal pseudotetrahedral arrangement. The cobalt(II) ion in 1 ⋅ 2MeOH exhibits an easy-axis anisotropy leading to a spin-reversal barrier of 55.3 cm-1 , which corresponds to an increase of about 17 % induced by the larger dihedral twist compared to the solvent-free complex 1. The magnetic relaxation for 1 ⋅ 2MeOH is significantly slower compared to 1. An in-depth frequency-domain Fourier-transform (FD-FT) THz-EPR study not only allowed the direct measurement of the magnetic transition between the two lowest Kramers doublets for the cobalt(II) complexes, but also revealed the presence of spin-phonon coupling. Interestingly, a similar dihedral twist correlation is also observed for a second pair of cobalt(II)-based solvomorphs, which could be benchmarked by FD-FT THz-EPR.

17.
Chemistry ; 28(69): e202202577, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36094023

ABSTRACT

The intricate frameworks of paracyclophanes are an important target for synthesis since they are found in various chiral auxiliaries, solar cells, high-performance plastics, pharmaceuticals, and molecular machines. Whereas numerous methods exist for the preparation of symmetric paracyclophanes, protocols for the efficient synthesis of strained asymmetric scaffolds are limited. Here we report a remarkably simple photochemical route to strained [3.2]paracyclophanes starting from readily available educts. By way of NMR and X-ray analyses, we discovered that UV-irradiation of an aromatic carboxylic ester tethered to a toluene moiety leads to the intramolecular formation of a new C-C bond, with loss of an alcohol. A systematic evaluation of the reaction conditions and substituents, as well as radical starter and triplet quenching experiments, point to a reaction mechanism involving an excited triplet state and hydrogen atom transfer. The new method proved to be robust and versatile enabling the synthesis of a range of cyclophanes with different substitutions, including an unusual diastereoisomer with two planar chiral centers, and thus proved to be a valuable addition to the synthetic toolbox.


Subject(s)
Esters , Hydrogen
18.
Chemistry ; 28(72): e202202697, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36148551

ABSTRACT

In this paper, the photophysical behavior of four panchromatically absorbing, homoleptic bis(4H-imidazolato)CuI complexes, with a systematic variation in the electron-withdrawing properties of the imidazolate ligand, were studied by wavelength-dependent time-resolved femtosecond transient absorption spectroscopy. Excitation at 400, 480, and 630 nm populates metal-to-ligand charge transfer, intraligand charge transfer, and mixed-character singlet states. The pump wavelength-dependent transient absorption data were analyzed by a recently established 2D correlation approach. Data analysis revealed that all excitation conditions yield similar excited-state dynamics. Key to the excited-state relaxation is fast, sub-picosecond pseudo-Jahn-Teller distortion, which is accompanied by the relocalization of electron density onto a single ligand from the initially delocalized state at Franck-Condon geometry. Subsequent intersystem crossing to the triplet manifold is followed by a sub-100 ps decay to the ground state. The fast, nonradiative decay is rationalized by the low triplet-state energy as found by DFT calculations, which suggest perspective treatment at the strong coupling limit of the energy gap law.

19.
Dalton Trans ; 51(40): 15282-15291, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36129360

ABSTRACT

Herein, the synthesis in conjunction with the structural, electrochemical, and photophysical characterization of a 5,5'-bisphenanthroline (phenphen) linked heterodinuclear RuPt complex (Ru(phenphen)Pt) and its light-driven hydrogen formation activity are reported. A single crystal X-ray diffraction (SC-XRD) analysis identified a perpendicular orientation of the two directly linked 1,10-phenanthroline moieties. The disruption of π-conjugation blocks intramolecular electron transfer as evidenced by a comparative time-resolved optical spectroscopy study of Ru(phenphen)Pt and the reference complexes Ru(phenphen) and Ru(phenphen)Ru. However, reductive quenching is observed in the presence of an external electron donor such as triethylamine. Irradiating Ru(phenphen)Pt with visible light (470 nm) leads to H2 formation. We discuss a potential mechanism that mainly proceeds via Pt colloids and provide indications that initial hydrogen generation may also proceed via a molecular pathway. As previous reports on related heterodinuclear RuPt-based photocatalysts revealed purely molecular hydrogen evolution, the present work thus highlights the role of the bridging ligand in stabilizing the catalytic center and consequently determining the mechanism of light-induced hydrogen evolution in these systems.

20.
Chemistry ; 28(58): e202201897, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-35912418

ABSTRACT

The in situ Grignard Metalation Method (iGMM) is a straightforward one-pot strategy to synthesize alkaline-earth metal amides in multi-gram scale with high yields via addition of bromoethane to an ethereal suspension of a primary or secondary amine and magnesium (Part I) or calcium (Part II). This method is highly advantageous because no activation of calcium is required prior to the reaction. Contrary to the magnesium-based iGMM, there are some limitations, the most conspicuous one is the large influence of steric factors. The preparation of Ca(hmds)2 succeeds smoothly within a few hours with excellent yields opening the opportunity to prepare large amounts of this reagent. Side reactions and transfer of the iGMM to substituted anilines and N-heterocycles as well as other H-acidic substrates such as cyclopentadienes are studied. Bulky amidines cannot be converted directly to calcium amidinates via the iGMM but stoichiometric calciation with Ca(hmds)2 enables their preparation.

SELECTION OF CITATIONS
SEARCH DETAIL
...