Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Microbiol ; 21(1): 244-258, 2019 01.
Article in English | MEDLINE | ID: mdl-30362214

ABSTRACT

Chemoautotrophic bacteria belonging to the genus Sulfurimonas (class Campylobacteria) were previously identified as key players in the turnover of zero-valence sulfur, a central intermediate in the marine sulfur cycle. S. denitrificans was further shown to be able to oxidize cyclooctasulfur (S8 ). However, at present the mechanism of activation and metabolism of cyclooctasulfur is not known. Here, we assessed the transcriptome and proteome of S. denitrificans grown with either thiosulfate or S8 as the electron donor. While the overall expression profiles under the two growth conditions were rather similar, distinct differences were observed that could be attributed to the utilization of S8 . This included a higher abundance of expressed genes related to surface attachment in the presence of S8 , and the differential regulation of the sulfur-oxidation multienzyme complex (SOX), which in S. denitrificans is encoded in two gene clusters: soxABXY 1 Z 1 and soxCDY 2 Z 2 . While the proteins of both clusters were present with thiosulfate, only proteins of the soxCDY 2 Z 2 were detected at significant levels with S8 . Based on these findings a model for the oxidation of S8 is proposed. Our results have implications for interpreting metatranscriptomic and -proteomic data and for the observed high level of diversification of soxY 2 Z 2 among sulfur-oxidizing Campylobacteria.


Subject(s)
Helicobacteraceae/genetics , Helicobacteraceae/metabolism , Proteome , Sulfur/metabolism , Thiosulfates/metabolism , Transcriptome , Chemoautotrophic Growth , Gene Expression Regulation, Bacterial , Oxidation-Reduction , Proteomics
2.
Microbiologyopen ; 7(4): e00586, 2018 08.
Article in English | MEDLINE | ID: mdl-29423975

ABSTRACT

Chemoautotrophic bacteria belonging to the genus Sulfurimonas in the class Campylobacteria are widespread in many marine environments characterized by redox interfaces, yet little is known about their physiological adaptations to different environmental conditions. Here, we used liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) in a targeted metabolomics approach to study the adaptations of Sulfurimonas denitrificans to varying salt concentrations that are found in its natural habitat of tidal mudflats. Proline was identified as one of the most abundant internal metabolites and its concentration showed a strong positive correlation with ionic strength, suggesting that it acts as an important osmolyte in S. denitrificans. 2,3-dihydroxypropane-1-sulfonate was also positively correlated with ionic strength, indicating it might play a previously unrecognized role in osmoregulation. Furthermore, the detection of metabolites from the reductive tricarboxylic acid cycle at high internal concentrations reinforces the importance of this pathway for carbon fixation in Campylobacteria and as a hub for biosynthesis. As the first report of metabolomic data for an campylobacterial chemolithoautotroph, this study provides data that will be useful to understand the adaptations of Campylobacteria to their natural habitat at redox interfaces.


Subject(s)
Epsilonproteobacteria/metabolism , Proline/metabolism , Chemoautotrophic Growth , Chromatography, Liquid , Ecosystem , Epsilonproteobacteria/chemistry , Epsilonproteobacteria/genetics , Metabolomics , Oxidation-Reduction , Proline/analysis , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL